Возобновляемая энергия | это... Что такое Возобновляемая энергия? (original) (raw)

Ветряная мельница

Возобновляемая или регенеративная энергия ("Зеленая энергия") — энергия из источников, которые по человеческим масштабам являются неисчерпаемыми. Основной принцип использования возобновляемой энергии заключается в её извлечении из постоянно происходящих в окружающей среде процессов и предоставлении для технического применения.

Возобновляемую энергию получают из природных ресурсов — таких как солнечный свет, ветер, дождь, приливы и геотермальная теплота — которые являются возобновляемыми (пополняются естественным путем). В 2006 году около 18 % мирового потребления энергии было удовлетворено из возобновляемых источников энергии, причем 13 % из традиционной биомассы, таких, как сжигание древесины.[1] Гидроэлектроэнергия является очередным крупнейшим источником возобновляемой энергии, обеспечивая 3,3 % мирового потребления энергии и 15,3 % мировой генерации электроэнергии в 2010 году. В 2010 году 16,7% мирового потребления энергии поступало из возобновляемых источников. Доля возобновляемой энергии уменьшается, но это происходит за счёт сокращения доли традиционной биомассы, которая составила всего 8,5% в 2010 году. Доля современной возобновляемой энергии растёт и в 2010 году составила 8,2%, в том числе гидроэнергия 3,3%, для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%.[2] Использование энергии ветра растет примерно на 30 процентов в год, по всему миру с установленной мощностью 196600 мегаватт (МВт) в 2010 году,[3] и широко используется в странах Европы и США.[4] Ежегодное производство в фотоэлектрической промышленности достигло 6900 МВт в 2008 году[5]. Солнечные электростанции популярны в Германии и Испании.[6] Солнечные тепловые станции действуют в США и Испании, а крупнейшей из них является станция в пустыне Мохаве мощностью 354 МВт.[7] Крупнейшей в мире геотермальной установкой, является установка на гейзерах в Калифорнии, с номинальной мощностью 750 МВт. Бразилия проводит одну из крупнейших программ использования возобновляемых источников энергии в мире, связанную с производством топливного этанола из сахарного тростника. Этиловый спирт в настоящее время покрывает 18 процентов потребности страны в автомобильном топливе [8]. Топливный этанол также широко распространен в США.

Содержание

Примеры возобновляемой энергии

Энергия ветра

Это отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую,тепловую и любую другую форму энергии для использования в народном хозяйстве. Преобразование происходит с помощью ветрогенератора (для получения электричества),ветряных мельниц (для получения механической энергии) и многих других видов агрегатов. Энергия ветра является следствием деятельности солнца, поэтому она относится к возобновляемым видам энергии.

Мощность ветрогенератора зависит от площади, заметаемой лопастями генератора. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. В море, на расстоянии 10—12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров.

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

В перспективе планируется использование энергии ветра не посредством ветрогенераторов, а более нетрадиционным образом. В городе Масдар (ОАЭ) планируется строительство электростанции работающей на пьезоэффекте. Она будет представлять собой лес из полимерных стволов покрытых пьезоэлектрическими пластинами. Эти 55-метровые стволы будут изгибаться под действием ветра и генерировать ток.

Гидроэнергия

На этих электростанциях, в качестве источника энергии используется потенциальная энергия водного потока, первоисточником которой является Солнце, испаряющее воду, которая затем выпадает на возвышенностях в виде осадков и стекает вниз, формируя реки. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Также возможно использование кинетической энергии водного потока на так называемых свободно поточных (бесплотинных) ГЭС.

Особенности:

Типы ГЭС:

На 2010 год гидроэнергетика обеспечивает производство до 76 % возобновимой и до 16 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 1015 ГВт. Лидерами по выработке гидроэнергии на гражданина являются Норвегия, Исландия и Канада. Наиболее активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным источником энергии, в этой же стране размещено до половины малых гидроэлектростанций мира.

Энергия приливов и отливов

Электростанциями этого типа являются особым видом гидроэлектростанции, использующим энергию приливов, а фактически кинетическую энергию вращения Земли. Приливные электростанции строят на берегах морей, где гравитационные силы Луны и Солнца дважды в сутки изменяют уровень воды.

Для получения энергии залив или устье реки перекрывают плотиной, в которой установлены гидроагрегаты, которые могут работать как в режиме генератора, так и в режиме насоса (для перекачки воды в водохранилище для последующей работы в отсутствие приливов и отливов). В последнем случае они называются гидроакумулирующая электростанция.

Преимуществами ПЭС является экологичность и низкая себестоимость производства энергии. Недостатками — высокая стоимость строительства и изменяющаяся в течение суток мощность, из-за чего ПЭС может работать только в единой энергосистеме с другими типами электростанций.

Энергия волн

Волновые электростанции используют потенциальную энергию волн переносимую на поверхности океана. Мощность волнения оценивается в кВт/м. По сравнению с ветровой и солнечной энергией энергия волн обладает большей удельной мощностью. Несмотря на схожую природу с энергией приливов, отливов и океанских течений волновая энергия представляет собой отличный от них источник возобновляемой энергии.

Энергия солнечного света

Данный вид энергетики основывается на преобразовании электромагнитного солнечного излучения в электрическую или тепловую энергию.

Солнечные электростанции используют энергию Солнца как напрямую (фотоэлектрические СЭС работающие на явлении внутреннего фотоэффекта), так и косвенно - используя кинетическую энергию пара.

К СЭС косвенного действия относятся:

Схема солнечного пруда:
1 — слой пресной воды; 2 — градиентный слой;
3 — слой крутого рассола; 4 — теплообменник.

Крупнейшая электростанция подобного типа находится в Израиле, её мощность 5 Мвт, площадь пруда 250 000 м2, глубина 3 м.

Геотермальная энергия

Электростанции данного типа представляют собой теплоэлектростанции использующие в качестве теплоносителя воду из горячих геотермальных источников. В связи с отсутствием необходимости нагрева воды ГеоТЭС являются в значительной степени более экологически чистыми нежели ТЭС. Строятся ГеоТЭС в вулканических районах, где на относительно небольших глубинах вода перегревается выше температуры кипения и просачивается к поверхности, иногда проявляясь в виде гейзеров. Доступ к подземным источникам осуществляется бурением скважин.

Биоэнергетика

Данная отрасль энергетики специализируется на производстве энергии из биотоплива. Применяется в производстве как электрической энергии, так и тепловой.

Биотопливо первого поколения

Биото́пливотопливо из биологического сырья, получаемое, как правило, в результате переработки биологических отходов. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различают:

Биотопливо второго поколения

Завод пиролиза биомассы, Австрия

Биотопливо второго поколения — разнообразные виды топлива, получаемые различными методами пиролиза биомассы, или прочие виды топлива, помимо метанола, этанола, биодизеля получаемые из источников сырья «второго поколения». Быстрый пиролиз позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно произвести автомобильное топливо, или топливо для электростанций.

Источниками сырья для биотоплива второго поколения являются лигно-целлюлозные соединения, остающиеся после того, как пригодные для использования в пищевой промышленности части биологического сырья удаляются. Использование биомассы для производства биотоплива второго поколения направленно на сокращение количества использованной земли, пригодной для ведения сельского хозяйства[10]. К растениям — источникам сырья второго поколения относятся[11]:

Из биотоплив второго поколения, продающихся на рынке, наиболее известны BioOil производства канадской компании Dynamotive и SunDiesel германской компании CHOREN Industries GmbH.

По оценкам Германского Энергетического Агентства (Deutsche Energie-Agentur GmbH) (при ныне существующих технологиях) производство топлив пиролизом биомассы может покрыть 20 % потребностей Германии в автомобильном топливе. К 2030 году, с развитием технологий, пиролиз биомассы может обеспечить 35 % германского потребления автомобильного топлива. Себестоимость производства составит менее €0,80 за литр топлива.

Создана «Пиролизная сеть» (Pyrolysis Network (PyNe) — исследовательская организация, объединяющая исследователей из 15 стран Европы, США и Канады.

Весьма перспективно также использование жидких продуктов пиролиза древесины хвойных пород. Например, смесь 70% живичного скипидара, 25% метанола и 5% ацетона, то есть фракций сухой перегонки смолистой древесины сосны, с успехом может применяться в качестве замены бензина марки А-80. Причём для перегонки применяются отходы дереводобычи: сучья, пень, кора. Выход топливных фракций достигает 100 килограммов с тонны отходов.

Биотопливо третьего поколения

Биотопливо третьего поколения — топлива, полученные из водорослей.

Департамент Энергетики США с 1978 года по 1996 года исследовал водоросли с высоким содержанием масла по программе «Aquatic Species Program». Исследователи пришли к выводу, что Калифорния, Гавайи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1 000 м2. Пруд в Нью-Мексико показал высокую эффективность в захвате СО2. Урожайность составила более 50 граммов водорослей с 1 м2 в день. 200 тысяч гектаров прудов могут производить топливо, достаточное для годового потребления 5 % автомобилей США. 200 тысяч гектаров — это менее 0,1 % земель США, пригодных для выращивания водорослей. У технологии ещё остаётся множество проблем. Например, водоросли любят высокую температуру (для их производства хорошо подходит пустынный климат), однако требуется дополнительная температурная регуляция, защищающая выращиваемую культуру от ночных понижений температуры («похолоданий»). В конце 1990-х годов технология не была запущена в промышленное производство в связи с относительно низкой стоимостью нефти на рынке.

Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимого для выращивания водорослей. Данная технология выращивания культуры водорослей защищена от суточных колебаний температуры, не требует жаркого пустынного климата — то есть может быть применена практически на любой действующей ТЭЦ.

Критика

Критики развития биотопливной индустрии заявляют, что растущий спрос на биотопливо вынуждает сельхозпроизводителей сокращать посевные площади под продовольственными культурами и перераспределять их в пользу топливных. Например, при производстве этанола из кормовой кукурузы, барда используется для производства комбикорма для скота и птицы. При производстве биодизеля из сои или рапса жмых используется для производства комбикорма для скота. То есть производство биотоплива создаёт ещё одну стадию переработки сельскохозяйственного сырья.

Источники возобновляемой энергии

Термоядерный синтез Солнца является источником большинства видов возобновляемой энергии, за исключением геотермической энергии и энергии приливов и отливов. По расчётам астрономов, оставшаяся продолжительность жизни Солнца составляет около пяти миллиардов лет, так что по человеческим масштабам возобновляемой энергии, происходящей от Солнца, истощение не грозит.

В строго физическом смысле энергия не возобновляется, а постоянно изымается из вышеназванных источников. Из солнечной энергии, прибывающей на Землю, лишь очень небольшая часть трансформируется в другие формы энергии, а бо́льшая часть просто уходит в космос.

Использованию постоянных процессов противопоставлена добыча ископаемых энергоносителей, таких как каменный уголь, нефть, природный газ или торф. В широком понимании они тоже являются возобновляемыми, но не по меркам человека, так как их образование требует сотен миллионов лет, а их использование проходит гораздо быстрее.

Меры поддержки возобновляемых источников энергии

На данный момент существует достаточно большое количество мер поддержки ВИЭ. Некоторые из них уже зарекомендовали себя как эффективные и понятные участникам рынка. Среди таких мер стоит более подробно рассмотреть:

Зеленые сертификаты

Под зелеными сертификатами понимаются сертификаты, подтверждающие генерацию определенного объема электроэнергии на основе ВИЭ. Данные сертификаты получают только квалифицированные соответствующим органом производители. Как правило, зеленый сертификат подтверждает генерацию 1Мвт•ч, хотя данная величина может быть и другой. Зеленый сертификат может быть продан либо вместе с произведенной электроэнергией, либо отдельно, обеспечивая дополнительную поддержку производителя электроэнергии. Для отслеживания выпуска и принадлежности «зеленых сертификатов» используются специальные программно-технические средства (WREGIS, M-RETS, NEPOOL GIS). В соответствии с некоторыми программами сертификаты можно накапливать (для последующего использования в будущем), либо занимать (для исполнения обязательств в текущем году). Движущей силой механизма обращения зеленых сертификатов является необходимость выполнения компаниями обязательств, взятых на себя самостоятельно или наложенных правительством. В зарубежной литературе «зеленые сертификаты» известны также как: Renewable Energy Certificates (RECs), Green tags, Renewable Energy Credits.

Возмещение стоимости технологического присоединения

Для повышения инвестиционной привлекательности проектов на основе ВИЭ государственными органами может предусматриваться механизм частичной или полной компенсации стоимости технологического присоединения генераторов на основе возобновляемых источников к сети. На сегодняшний день только в Китае сетевые организации полностью принимают на себя все затраты на технологическое присоединение.

Фиксированные тарифы на энергию ВИЭ

Накопленный в мире опыт позволяет говорить о фиксированных тарифах как о самых успешных мерах по стимулированию развития возобновляемых источников энергии. В основе данных мер поддержки ВИЭ лежат три основных фактора:

Фиксированные тарифы на энергию ВИЭ могут отличаться не только для разных источников возобновляемой энергии, но и в зависимости от установленной мощности ВИЭ. Одним из вариантов системы поддержки на основе фиксированных тарифов является использование фиксированной надбавки к рыночной цене энергии ВИЭ. Как правило, надбавка к цене произведенной электроэнергии или фиксированный тариф выплачиваются в течение достаточно продолжительного периода (10-20 лет), тем самым гарантируя возврат вложенных в проект инвестиций и получение прибыли.

Система чистого измерения

Данная мера поддержки предусматривает возможность измерения отданного в сеть электричества и дальнейшее использование этой величины во взаиморасчетах с электроснабжающей организацией. В соответствии с «системой чистого измерения» владелец ВИЭ получает розничный кредит на величину, равную или большую выработанной электроэнергии. В соответствии с законодательством, во многих странах электроснабжающие организации обязаны предоставлять потребителям возможность осуществления чистого измерения.

Инвестиции

Во всём мире в 2008 году инвестировали 51,8млрдвветроэнергетику,51,8 млрд в ветроэнергетику, 51,8млрдвветроэнергетику,33,5 млрд в солнечную энергетику и 16,9млрдвбиотопливо.СтраныЕвропыв2008годуинвестироваливальтернативнуюэнергетику16,9 млрд в биотопливо. Страны Европы в 2008 году инвестировали в альтернативную энергетику 16,9млрдвбиотопливо.СтраныЕвропыв2008годуинвестироваливальтернативнуюэнергетику50 млрд, страны Америки — 30млрд,[Китай](741)—30 млрд, Китай30млрд,[Китай](741)15,6 млрд, Индия — $4,1 млрд[12].

В 2009 году инвестиции в возобновляемую энергетику во всём мире составляли 160млрд,ав2010году—160 млрд, а в 2010 году — 160млрд,ав2010году211 млрд. В 2010 году в ветроэнергетику было инвестировано 94,7млрд,всолнечнуюэнергетику—94,7 млрд, в солнечную энергетику — 94,7млрд,всолнечнуюэнергетику26,1 млрд и $11 млрд — в технологии производства энергии из биомассы и мусора[13].

См. также

Примечания

  1. Global Status Report 2007 (PDF).
  2. http://www.map.ren21.net/GSR/GSR2012.pdf
  3. REN21 (2009). Renewables Global Status Report: 2009 Update p. 9.
  4. Global wind energy markets continue to boom — 2006 another record year (PDF).
  5. REN21 (2009). Renewables Global Status Report: 2009 Update p. 15.
  6. World’s largest photovoltaic power plants
  7. Solar Trough Power Plants (PDF).
  8. America and Brazil Intersect on Ethanol
  9. Солнечный соляной пруд — базовый элемент индивидуальных солнечных установок..
  10. 2^nd Generation Biomass Conversion Efficiency study
  11. IATA Alternative Fuels
  12. Green energy overtakes fossil fuel investment, says UN
  13. Renewables Investment Breaks Records 29 Август 2011 г.

Ссылки

commons: Возобновляемая энергия на Викискладе?
Просмотр этого шаблона Экология
Общее Общая экологияПрикладная экологияСоциальная экология • Интегральная экология • Промышленная экологияМедицинская экологияОхрана природыКрасная книгаЭкологический следИстория экологииГеоэкологияЭкология насекомыхУстойчивый транспортЗащита природы (Энвайронментализм)
Глобальные проблемы Глобальное потеплениеГлобальное затемнениеПроблема народонаселенияВыхлопные газыОзоновые дырыОпустыниваниеОбезлесениеВыбросыЭкологические катастрофы
Организации и движения Всемирный фонд дикой природыМеждународный союз охраны природыГринписМеждународный Зелёный КрестСоциальная экология (движение)Earth First!Движение за добровольное исчезновение человечества
Экологическое право Международное право охраны окружающей средыЭкологические преступленияЭкологическая безопасностьДекларация Рио
Законы Биоклиматический закон ХопкинсаЗакон оптимумаЗакон толерантности ШелфордаЗакон ограничивающего фактора
Экологические акции Час Земли
Дни Международный день предотвращения эксплуатации окружающей среды во время войны и вооружённых конфликтовМеждународный день действий против плотинМеждународный день охраны озонового слояМеждународный день Матери-ЗемлиВсемирный день борьбы с опустыниванием и засухойВсемирный день водно-болотных угодийВсемирный день водных ресурсовВсемирный день охраны мест обитанийВсемирный день окружающей средыВсемирный день защиты животныхВсемирный день защиты слонов в зоопаркахВсемирный день океановВсемирный день моряВсемирный день китовВсемирный день ХабитатДень ЗемлиДень слонаДень экологаДень Балтийского моряДни защиты от экологической опасностиДень заповедников и национальных парковДень работников леса и лесоперерабатывающей промышленностиДень посадки деревьев
Альтернативная энергетика БиотопливоВозобновляемые ресурсыВозобновляемая энергияГеотермальная энергетикаСолнечная энергетика
Загрязнения Загрязнение атмосферыЗагрязнение пресных водЗагрязнение океановЗагрязнение почв • Химическое загрязнение • Световое загрязнениеШумовое загрязнениеЭлектромагнитное загрязнениеРадиоактивное заражениеЗагрязняющее веществоЗагрязнитель
Климат, Климатология
Изменение климата ПалеоклиматологияЭль-НиньоГеохимический цикл углеродаПротерозойское оледенение, Ледниковый период, Малый ледниковый период • Термальный максимум (Позднепалеоценовый термальный максимум, Последний ледниковый максимум) • ЛедникиТеплооборот
Глобальное потепление Вырубка лесовПротиводействие изменению климата • Глобальная климатическая модель • Глобальное похолоданиеГлобальное затемнениеОзоновая дыраПарниковый эффектДиоксид углеродаПарниковые газыМежправительственная группа экспертов по изменению климатаРамочная конвенция ООН об изменении климата (Киотский протокол) • Пик нефтиВозобновляемая энергия • Температурный тренд • Повышение уровня моря • Копенгагенский консенус