Иерархическая модель данных | это... Что такое Иерархическая модель данных? (original) (raw)
Иерархическая модель данных — представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней.
Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможна ситуация, когда объект-предок не имеет потомков или имеет их несколько, тогда как у объекта-потомка обязательно только один предок. Объекты, имеющие общего предка, называются близнецами.
Первые системы управления базами данных[_уточнить_] использовали иерархическую модель данных.[источник не указан 60 дней]
Содержание
- 1 Примеры
- 2 Структурная часть иерархической модели
- 3 Управляющая часть иерархической модели
- 4 Примеры типичных операторов поиска данных
- 5 Известные иерархические СУБД
- 6 Преобразование концептуальной модели в иерархическую модель данных
- 7 См. также
Примеры
Например, если иерархическая база данных содержала информацию о покупателях и их заказах, то будет существовать объект «покупатель» (родитель) и объект «заказ» (дочерний). Объект «покупатель» будет иметь указатели от каждого заказчика к физическому расположению заказов покупателя в объект «заказ».
В этой модели запрос, направленный вниз по иерархии, прост (например: какие заказы принадлежат этому покупателю); однако запрос, направленный вверх по иерархии, более сложен (например, какой покупатель поместил этот заказ). Также, трудно представить не-иерархические данные при использовании этой модели.
Иерархической базой данных является файловая система, состоящая из корневого каталога, в котором имеется иерархия подкаталогов и файлов.
Структурная часть иерархической модели
Основными информационными единицами в иерархической модели данных являются сегмент и поле. Поле данных определяется как наименьшая неделимая единица данных, доступная пользователю. Для сегмента определяются тип сегмента и экземпляр сегмента. Экземпляр сегмента образуется из конкретных значений полей данных. Тип сегмента — это поименованная совокупность входящих в него типов полей данных.
Как и сетевая, иерархическая модель данных базируется на графовой форме построения данных, и на концептуальном уровне она является просто частным случаем сетевой модели данных. В иерархической модели данных вершине графа соответствует тип сегмента или просто сегмент, а дугам — типы связей предок — потомок. В иерархических структуpax сегмент — потомок должен иметь в точности одного предка.
Иерархическая модель представляет собой связный неориентированный граф древовидной структуры, объединяющий сегменты. Иерархическая БД состоит из упорядоченного набора деревьев.
Управляющая часть иерархической модели
В рамках иерархической модели выделяют языковые средства описания данных (ЯОД) и средства манипулирования данными (ЯМД). Каждая физическая база описывается набором операторов, обусловливающих как её логическую структуру, так и структуру хранения БД. При этом способ доступа устанавливает способ организации взаимосвязи физических записей.
Определены следующие способы доступа:
- иерархически последовательный;
- иерархически индексно-последовательный;
- иерархически прямой;
- иерархически индексно-прямой;
- индексный.
Помимо задания имени БД и способа доступа описания должны содержать определения типов сегментов, составляющих БД, в соответствии с иерархией, начиная с корневого сегмента. Каждая физическая БД содержит только один корневой сегмент, но в системе может быть несколько физических БД.
Среди операторов манипулирования данными можно выделить операторы поиска данных, операторы поиска данных с возможностью модификации, операторы модификации данных. Набор операций манипулирования данными в иерархической БД невелик, но вполне достаточен.
Примеры типичных операторов поиска данных
- найти указанное дерево БД;
- перейти от одного дерева к другому;
- найти экземпляр сегмента, удовлетворяющий условию поиска;
- перейти от одного сегмента к другому внутри дерева;
- перейти от одного сегмента к другому в порядке обхода иерархии.
Примеры типичных операторов поиска данных с возможностью модификации:
- найти и удержать для дальнейшей модификации единственный экземпляр сегмента, удовлетворяющий условию поиска;
- найти и удержать для дальнейшей модификации следующий экземпляр сегмента с теми же условиями поиска;
- найти и удержать для дальнейшей модификации следующий экземпляр для того же родителя.
Примеры типичных операторов модификации иерархически организованных данных, которые выполняются после выполнения одного из операторов второй группы (поиска данных с возможностью модификации):
- вставить новый экземпляр сегмента в указанную позицию;
- обновить текущий экземпляр сегмента;
- удалить текущий экземпляр сегмента.
В иерархической модели автоматически поддерживается целостность ссылок между предками и потомками. Основное правило: никакой потомок не может существовать без своего родителя.
Известные иерархические СУБД
- Типичным представителем (наиболее известным и распространенным) является Information Management System (IMS) фирмы IBM.
- Time-Shared Date Management System (TDMS) компании Development Corporation;
- Mark IV MultiAccess Retrieval System компании Control Data Corporation;
- System 2000 разработки SAS Institute;
- Серверы каталогов, такие, как LDAP и Active Directory (допускают чёткое представление в виде дерева)
- По принципу иерархической БД построены иерархические файловые системы и Реестр Windows.
- InterSystems Caché
- Google App Engine Datastore API
Преобразование концептуальной модели в иерархическую модель данных
Преобразование концептуальной модели в иерархическую структуру данных во многом схоже с преобразованием её в сетевую модель, но и имеет некоторые отличия в связи с тем, что иерархическая модель требует организации всех данных в виде дерева.
Преобразование связи типа «один ко многим» между предком и потомком осуществляется практически автоматически в том случае, если потомок имеет одного предка, и происходит это следующим образом. Каждый объект с его атрибутами, участвующий в такой связи, становится логическим сегментом. Между двумя логическими сегментами устанавливается связь типа «один ко многим». Сегмент со стороны «много» становится потомком, а сегмент со стороны «один» становится предком.
Ситуация значительно усложняется, если потомок в связи имеет не одного, а двух и более предков. Так как подобное положение является невозможным для иерархической модели, то отражаемая структура данных нуждается в преобразованиях, которые сводятся к замене одного дерева, например, двумя (если имеется два предка). В результате такого преобразования в базе данных появляется избыточность, так как единственно возможный выход из этой ситуации — дублирование данных.
См. также
Базы данных | |
---|---|
Концепции | Модель данных • Реляционная (модель • алгебра • Нормальная форма • Ссылочная целостность • БД • СУБД) • Иерархическая модель • Сетевая (модель • СУБД) • Объектно-ориентированная (БД • СУБД) • Транзакция • Журнализация • Секционирование |
Объекты | Отношение (таблица) • Представление • Хранимая процедура • Триггер • Курсор • Индекс |
Ключи | Потенциальный • Первичный • Внешний • Естественный • Суррогатный (искусственный) • Суперключ |
SQL | SELECT • INSERT • UPDATE • MERGE • DELETE • TRUNCATE • JOIN • UNION • INTERSECT • EXCEPT • CREATE • ALTER • DROP • GRANT • COMMIT • ROLLBACK |
СУБД | IMS • DB2 • Informix • Oracle Database • Microsoft SQL Server • Adaptive Server Enterprise • Teradata Database • Firebird • PostgreSQL • MySQL • SQLite • Microsoft Access • Visual FoxPro • ЛИНТЕР • CouchDB • MongoDB |
Компоненты | Язык запросов • Оптимизатор запросов • План выполнения запроса • ODBC • ADO • ADO.NET • JDBC |