Факторы транскрипции | это... Что такое Факторы транскрипции? (original) (raw)

Факторы транскрипции (транскрипционные факторы) — белки́, контролирующие процесс синтеза мРНК на матрице ДНК (транскрипцию) путём связывания со специфичными участками ДНК[1][2]. Транскрипционные факторы выполняют свою функцию либо самостоятельно, либо в комплексе с другими белками. Они обеспечивают снижение (репрессоры) или повышение (активаторы) константы связывания РНК-полимеразы с регуляторными последовательностями регулируемого гена[3][4][5].

Определяющая черта факторов транскрипции — наличие в их составе одного или более ДНК-связывающих доменов, которые взаимодействуют с характерными участками ДНК, расположенными в регуляторных областях генов. Другие белки, играющие ключевую роль в регуляции экспрессии генов, такие как коактиваторы, гистонацетилазы, киназы, метилазы, не имеют ДНК-связывающих доменов, и, следовательно, не могут быть причислены к транскрипционным факторам[6][7][8].

Содержание

Консервативность у различных организмов

Факторы транскрипции необходимы для регуляции экспрессии генов и обнаружены у всех живых организмов. Их количество, как абсолютное, так и удельное, возрастает с ростом размера генома[9].

В геноме человека обнаружено более 2600 белков, имеющих ДНК-связывающий домен, и большинство из них предположительно являются факторами транскрипции[10]. Следовательно, около 10 % всех генов в геноме кодируют транскрипционные факторы. Таким образом, они являются самым большим семейством белков человека. Более того, активность многих генов регулируется корпоративным взаимодействием большого числа различных факторов транскрипции, что позволяет обеспечить каждому из генов уникальный способ регуляции в процессе развития организма[8].

Функции

Факторы транскрипции — одна из групп белков, обеспечивающих прочтение и интерпретацию генетической информации. Они связывают ДНК и способствуют инициации программы повышения или понижения транскрипции гена. Таким образом, они жизненно необходимы для нормального функционирования организма на всех уровнях. Ниже перечислены важнейшие из процессов, в которые вовлечены факторы транскрипции.

Регуляция базальной экспрессии генов

Фоновая транскрипционная активность обеспечивается набором ТФ, общим для всех генов. Важный класс эукариотических факторов транскрипции — GTFs (general transcription factors).[11][12] Многие из его представителей не связывают ДНК непосредственно, а входят в состав комплекса инициации транскрипции (преинициирующего комплекса), который напрямую взаимодействует с РНК-полимеразой. Наиболее распространенными GTF являются TFIIA, TFIIB, TFIID (связываются с т. н. ТАТА-боксом (элементом промотора)), TFIIE, TFIIF, and TFIIH.[13]

Помимо ТФ, необходимых для экспрессии всех генов, существуют также специфичные факторы транскрипции, обеспечивающие включение/выключение определенных генов в нужный момент.

Регуляция онтогенеза

Многие ТФ многоклеточных организмов вовлечены в обеспечение их развития.[14] Действуя в соответствии с генетической программой и/или в ответ на внешние воздействия, они инициируют или подавляют транскрипцию определенных генов, что влечет за собой изменения в клеточной морфологии, клеточную дифференциацию, морфогенез, органогенез и т. д. Например, семейство гомеобоксных ТФ критично для формирования правильной морфологии тела у организмов от дрозофилы до человека.[15][16] Мутации генов этих белков (гомеозисные мутации) у дрозофил приводят к серьёзным нарушениям в дифференцировке сегментов тела данных насекомых (например, развитие ног вместо усиков).

Другой пример данной группы ТФ — продукт гена полопределяющего региона Y (SRY, Sex-determining Region Y), который играет важную роль в детерминации пола человека.[17]

Ответ на внеклеточные сигналы

Согласованная регуляция взаимодействия клеток многоклеточного организма осуществляется путем высвобождения специальных молекул (гормонов, цитокинов и т. п.), которые вызывают сигнальный каскад в клетках-мишенях. В случае, если сигнал вызывает изменение уровня экспрессии определенных генов, конечным звеном каскада часто оказываются ТФ.[18] Эстрогеновый сигнальный путь — пример короткого каскада, включающего транскрипционный фактор рецептора эстрогена: эстроген секретируется тканями плаценты и яичника, преодолевает плазматическую мембрану реципиентных клеток, и связывается со своим рецептором в цитоплазме. Рецептор эстрогена проникает в ядро и связывает специфичный участок ДНК, изменяя регуляции транскрипции соответствующего гена.[19]

Ответ на изменение окружающей среды

ТФ — не единственные конечные звенья сигнальных каскадов, возникающих в ответ на различные внешние стимулы, но они тоже могут быть эффекторами в сигнальных каскадах, индуцируемых воздействием окружающей среды. Например, фактор теплового шока (HSF) активирует гены белков теплового шока, которые обеспечивают выживание при повышении температуры (например, шапероны)[20], гипоксия-индуцируемый фактор (HIF) — при снижении концентрации кислорода[21]; белок SREBP (sterol regulatory element binding protein) помогает поддерживать необходимое содержание липидов в клетках.[22]

Контроль клеточного цикла

Многие ТФ, особенно онкогены и онкосупрессоры, участвуют в регуляции клеточного цикла. Они определяют переход от одной фазы клеточного цикла к другой, частоту делений и интенсивность роста. Один из наиболее известных подобных ТФ — онкоген Myc, играющий важную роль в росте клеток и направлении их в апоптоз.

Регуляция

Все общебиологические процессы имеют многоуровневую регуляцию и контроль. Это верно и для ТФ — ТФ не только обеспечивают регуляцию уровня накопления белков и РНК в клетке, но и регулируют активность собственных генов (часто с помощью других ТФ). Ниже кратко описаны основные способы регуляции активности ТФ.

Общие для всех белков

Уровень накопления ТФ в клетке регулируется по той же схеме, что и у других белков за счет контроля транскрипции, деградации мРНК, трансляции, постпроцессинга белка, его внутриклеточной локализации и деградации. Возможна саморегуляция по принципу отрицательной обратной связи — ТФ репрессирует активность кодирующего его гена.

Внутриядерная локализация

У эукариотических организмов процессы транскрипции и трансляции пространственно разделены — они происходят в ядре и цитоплазме соответственно. После синтеза ТФ должны проникнуть в ядро, преодолев двойную мембрану. Многие белки, функционирующие в ядре, имеют сигнал ядерной локализации — специфичной участок полипептидной цепи, адресующий белок в ядро. Для многих ТФ транслокация является ключевым фактором в регуляции их активности.[23] Важные классы ТФ, такие как некоторые ядерные рецепторы, должны сперва связать лиганд в цитоплазме и только потом транспортироваться в ядро.[23]

Активация

ТФ могут быть активированы/деактивированны путем воздействия на их сигнал-чувствительный домен различным образом:

Доступность сайта связывания ДНК

У эукариот гены, не транскрибируемые постоянно, часто находятся в гетерохроматине (участках ДНК, плотно упакованных за счет связывания гистонов и организованных в компактные хроматиновые фибриллы). ДНК в составе гетерохроматина недоступна для многих ТФ. Для того, чтобы ТФ могли связаться с ДНК, гетерохроматин должен быть трансформирован в эухроматин, обычно путем модификаций гистонов. Сайт связывания ТФ на ДНК может быть недоступным и в случае, если он связан другим ТФ. Пары ТФ могут играть антагонистическую роль (активатор — репрессор) при регуляции активности одного гена.

Наличие других кофакторов/транскрипционных факторов

Большинство ТФ не работают в одиночку. Часто для активации транскрипции гена с его регуляторными элементами должно связаться большое количество ТФ. Связывании ТФ вызывает привлечение промежуточных белков, таких как кофакторы, что приводит к сборке преинициационного комплекса и посадке на промотор РНК-полимеразы.

Структура

ТФ являются модульными по структуре и содержат следующие домены[1]:

ДНК-связывающий домен

Структурно-функциональная единица (домен) факторов транскрипции, связывающая ДНК, называется ДНК-связывающим доменом. Ниже приведен список важнейших семейств ДНК-связывающих доменов/ТФ:

Семейство NCBI conserved domains База данных структурной классификации белков (SCOP) База данных InterPro
Спираль-петля-спираль (helix-loop-helix)[27] cl00228 47460 IPR001092
Лейциновая молния[28] cl02576 57959 IPR004827
C-концевые эффекторные домены составных регуляторов ответа 46894 IPR001789
GCC box cl00033 54175
Спираль-поворот-спираль (helix-turn-helix)[29] cl02600
Гомеодоменные белки — связывают гомеобокс (особый участок ДНК). Играют критическую роль в индивидуальном развитии организмов (онтогенезе).[30] cd00086 46689 IPR009057
Подобные репрессору фага лямбда 47413 IPR010982
srf-подобные cl00109 55455 IPR002100
Парный бокс[31] cl09102
winged helix 46785 IPR011991
Цинковые пальцы[32]
* многодоменные Cys2His2 цинковые пальцы[33] pfam00096 57667 IPR007087
* Zn2/Cys6 57701
* Zn2/Cys8 цинковые пальцы ядерных рецепторов гормонов pfam00105 57716 IPR001628

Сайты связывания ТФ

Участки ДНК, которые взаимодействуют с факторами транскрипции, называются сайтами связывания ТФ. Взаимодействие осуществляется за счет электростатических сил, водородных связей и сил Ван-дер-Ваальса. За счет корпоративного, стерически детерминированного действия данных сил, которое определяется пространственной структурой белковой молекулы, ТФ связываться только с определенными участками ДНК. Не все нуклеотидные основания в ДНК, входящие в сайт связывания ТФ, имеют одинаковую значимость при взаимодействии с белком. Вследствие этого, ТФ обычно связывают не участок со строго определенной первичной структурой, а группу структур с близким сходством, каждую — с разной степенью сродства. Например, хотя консенсусной последовательностью сайта связывания ТАТА-связывающих белков является ТАТАААА, они могут взаимодействовать также с ТАТАТАТ и ТАТАТАА.

Вследствие того, что ТФ взаимодействуют с короткими участками ДНК гетерогенной структуры, потенциальные сайты связывания ТФ могут возникать случайно в достаточно протяженной молекуле ДНК. Маловероятно, однако, что ТФ взаимодействуют со всеми подходящими элементами в геноме.

Различные ограничения, такие как доступность сайтов и наличие кофакторов, могут способствовать направлению ТФ в нужные участки ДНК. Таким образом, затруднительно на основании последовательности генома достоверно предсказать реальное место посадки ТФ на ДНК in vivo. Дополнительная специфичность ТФ может опосредоваться наличием нескольких ДНК связывающих доменов в составе одного белка, которые взаимодействуют с двумя или более смежными последовательностями одновременно.

Клинические аспекты

В связи с ключевой ролью ТФ в процессе реализации наследственной информации, некоторые заболевания человека могут быт вызваны мутациями в генах ТФ. Ниже приведены некоторые наиболее изученные нарушения подобного рода:

Классификация

ТФ могут классифицироваться по (1) механизму действия, (2) регуляторной функции, (3) структуре ДНК-связывающего домена.

Механизм действия

По данному признаку выделяют три класса ТФ:

Функция

  1. Конститутивные — присутствуют всегда во всех клетках — главные факторы транскрипции, Sp1, NF1, CCAAT.
  2. Активируемые (активны в определенных условиях)
    1. Участвующие в развитии организма (клетко-специфичные) — экспрессия строго контролируется, но, начав экспрессироваться, не требуют дополнительной активации — GATA, HNF, PIT-1, MyoD, Myf5, Hox, Winged Helix.
    2. Сигнал-зависимые — требуют внешнего сигнала для активации
      1. внеклеточные сигнал-зависимые — ядерные рецепторы
      2. внутриклеточные сигнал-зависимые — активируются низкомолекулярными внутриклеточными соединениями — SREBP, p53, одиночные ядерные рецепторы
      3. мембраносвязанные рецептор-зависимые — фосфорилируются киназами сигнального каскада
        1. резидентные ядерные факторы — находятся в ядре независимо от активации — CREB, AP-1, Mef2
        2. латентные цитоплазматические факторы — в неактивном состоянии локализованы в цитоплазме, после активации транспортируются в ядро — STAT, R-SMAD, NF-kB, Notch, TUBBY, NFAT.

Структурная классификация

ДНК-связывающий домен типа «лейциновая молния» в комплексе с ДНК. Вверху — схематичное изображение молекулярной поверхности, внизу — третичной структуры комплекса.

ДНК-связывающий домен типа «спираль-петля-спираль» в комплексе с ДНК. Вверху — схематичное изображение третичной структуры, внизу — молекулярной поверхности комплекса.

Факторы транскрипции классифицируют на основании сходства первичной структуры (что предполагает и сходство третичной структуры) ДНК-связывающих доменов.[39][40][41]

Примечания

  1. 1 2 Latchman DS (1997). «Transcription factors: an overview». Int. J. Biochem. Cell Biol. 29 (12): 1305–12. DOI:10.1016/S1357-2725(97)00085-X. PMID 9570129.
  2. Karin M (1990). «Too many transcription factors: positive and negative interactions». New Biol. 2 (2): 126–31. PMID 2128034.
  3. Roeder RG (1996). «The role of general initiation factors in transcription by RNA polymerase II». Trends Biochem. Sci. 21 (9): 327–35. DOI:10.1016/0968-0004(96)10050-5. PMID 8870495.
  4. Nikolov DB, Burley SK (1997). «RNA polymerase II transcription initiation: a structural view». Proc. Natl. Acad. Sci. U.S.A. 94 (1): 15–22. DOI:10.1073/pnas.94.1.15. PMID 8990153.
  5. Lee TI, Young RA (2000). «Transcription of eukaryotic protein-coding genes». Annu. Rev. Genet. 34: 77–137. DOI:10.1146/annurev.genet.34.1.77. PMID 11092823.
  6. Mitchell PJ, Tjian R (1989). «Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins». Science 245 (4916): 371-8. DOI:10.1126/science.2667136. PMID 2667136.
  7. Ptashne M, Gann A (1997). «Transcriptional activation by recruitment». Nature 386 (6625): 569-77. DOI:10.1038/386569a0. PMID 9121580.
  8. 1 2 Brivanlou AH, Darnell JE (2002). «Signal transduction and the control of gene expression». Science 295 (5556): 813-8. DOI:10.1126/science.1066355. PMID 11823631.
  9. van Nimwegen E (2003). «Scaling laws in the functional content of genomes». Trends Genet. 19 (9): 479–84. DOI:10.1016/S0168-9525(03)00203-8. PMID 12957540.
  10. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA (2004). «Structure and evolution of transcriptional regulatory networks». Curr. Opin. Struct. Biol. 14 (3): 283–91. DOI:10.1016/j.sbi.2004.05.004. PMID 15193307.
  11. Reese JC (April 2003). «Basal transcription factors». Current opinion in genetics & development 13 (2): 114–8. DOI:10.1016/S0959-437X(03)00013-3. PMID 12672487.
  12. Shilatifard A, Conaway RC, Conaway JW (2003). «The RNA polymerase II elongation complex». Annual review of biochemistry 72: 693–715. DOI:10.1146/annurev.biochem.72.121801.161551. PMID 12676794.
  13. Thomas MC, Chiang CM (2006). «The general transcription machinery and general cofactors». Critical reviews in biochemistry and molecular biology 41 (3): 105–78. PMID 16858867.
  14. Lobe CG (1992). «Transcription factors and mammalian development». Current topics in developmental biology 27: 351–83. PMID 1424766.
  15. Lemons D, McGinnis W (September 2006). «Genomic evolution of Hox gene clusters». Science (New York, N.Y.) 313 (5795): 1918–22. DOI:10.1126/science.1132040. PMID 17008523.
  16. Moens CB, Selleri L (March 2006). «Hox cofactors in vertebrate development». Developmental biology 291 (2): 193–206. DOI:10.1016/j.ydbio.2005.10.032. PMID 16515781.
  17. Ottolenghi C, Uda M, Crisponi L, Omari S, Cao A, Forabosco A, Schlessinger D (January 2007). «Determination and stability of sex». BioEssays : news and reviews in molecular, cellular and developmental biology 29 (1): 15–25. DOI:10.1002/bies.20515. PMID 17187356.
  18. Pawson T (1993). «Signal transduction--a conserved pathway from the membrane to the nucleus». Developmental genetics 14 (5): 333–8. DOI:10.1002/dvg.1020140502. PMID 8293575.
  19. Osborne CK, Schiff R, Fuqua SA, Shou J (December 2001). «Estrogen receptor: current understanding of its activation and modulation». Clin. Cancer Res. 7 (12 Suppl): 4338s–4342s; discussion 4411s–4412s. PMID 11916222.
  20. Shamovsky I, Nudler E (March 2008). «New insights into the mechanism of heat shock response activation». Cell. Mol. Life Sci. 65 (6): 855–61. DOI:10.1007/s00018-008-7458-y. PMID 18239856.
  21. Benizri E, Ginouvès A, Berra E (April 2008). «The magic of the hypoxia-signaling cascade». Cell. Mol. Life Sci. 65 (7-8): 1133–49. DOI:10.1007/s00018-008-7472-0. PMID 18202826.
  22. Weber LW, Boll M, Stampfl A (November 2004). «Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins». World J. Gastroenterol. 10 (21): 3081–7. PMID 15457548.
  23. 1 2 Whiteside ST, Goodbourn S (April 1993). «Signal transduction and nuclear targeting: regulation of transcription factor activity by subcellular localisation». Journal of cell science 104 ( Pt 4): 949–55. PMID 8314906.
  24. Bohmann D (November 1990). «Transcription factor phosphorylation: a link between signal transduction and the regulation of gene expression». Cancer cells (Cold Spring Harbor, N.Y. : 1989) 2 (11): 337–44. PMID 2149275.
  25. Weigel NL, Moore NL (2007). «Steroid Receptor Phosphorylation: A Key Modulator of Multiple Receptor Functions». PMID 17536004.
  26. Wärnmark A, Treuter E, Wright AP, Gustafsson J-Å (2003). «Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation». Mol. Endocrinol. 17 (10): 1901–9. DOI:10.1210/me.2002-0384. PMID 12893880.
  27. Littlewood TD, Evan GI (1995). «Transcription factors 2: helix-loop-helix». Protein profile 2 (6): 621–702. PMID 7553065.
  28. Vinson C, Myakishev M, Acharya A, Mir AA, Moll JR, Bonovich M (September 2002). «Classification of human B-ZIP proteins based on dimerization properties». Molecular and cellular biology 22 (18): 6321–35. DOI:10.1128/MCB.22.18.6321-6335.2002. PMID 12192032.
  29. Wintjens R, Rooman M (September 1996). «Structural classification of HTH DNA-binding domains and protein-DNA interaction modes». Journal of molecular biology 262 (2): 294–313. DOI:10.1006/jmbi.1996.0514. PMID 8831795.
  30. Gehring WJ, Affolter M, Bürglin T (1994). «Homeodomain proteins». Annual review of biochemistry 63: 487–526. DOI:10.1146/annurev.bi.63.070194.002415. PMID 7979246.
  31. Dahl E, Koseki H, Balling R (September 1997). «Pax genes and organogenesis». BioEssays : news and reviews in molecular, cellular and developmental biology 19 (9): 755–65. DOI:10.1002/bies.950190905. PMID 9297966.
  32. Laity JH, Lee BM, Wright PE (February 2001). «Zinc finger proteins: new insights into structural and functional diversity». Current opinion in structural biology 11 (1): 39–46. DOI:10.1016/S0959-440X(00)00167-6. PMID 11179890.
  33. Wolfe SA, Nekludova L, Pabo CO (2000). «DNA recognition by Cys2His2 zinc finger proteins». Annual review of biophysics and biomolecular structure 29: 183–212. DOI:10.1146/annurev.biophys.29.1.183. PMID 10940247.
  34. Fichou Y, Nectoux J, Bahi-Buisson N, Rosas-Vargas H, Girard B, Chelly J, Bienvenu T. (Nov 2008). «The first missense mutation causing Rett syndrome specifically affecting the MeCP2_e1 isoform.». Neurogenetics. PMID 19034540.
  35. Al-Quobaili F, Montenarh M. (2008). «Pancreatic duodenal homeobox factor-1 and diabetes mellitus type 2 (review).». Int J Mol Med. 21(4): 399-404. PMID 18360684.
  36. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. (2001). «A forkhead-domain gene is mutated in a severe speech and language disorder.». Nature 413(6855): 519-523. PMID 11586359.
  37. 1 2 Banerjee-Basu S, Baxevanis AD (2004). «Structural analysis of disease-causing mutations in the P-subfamily of forkhead transcription factors.». Proteins 54(4): 639-647. PMID 14997560.
  38. Ariffin H, Martel-Planche G, Daud SS, Ibrahim K, Hainaut P. (2008). «Li-Fraumeni syndrome in a Malaysian kindred.». Cancer Genet Cytogenet. 186(1): 49-53. PMID 18786442.
  39. Stegmaier P, Kel AE, Wingender E (2004). «Systematic DNA-binding domain classification of transcription factors». Genome informatics. International Conference on Genome Informatics 15 (2): 276–86. PMID 15706513.
  40. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E (2006). «TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes». Nucleic Acids Res. 34 (Database issue): D108–10. DOI:10.1093/nar/gkj143. PMID 16381825.
  41. TRANSFAC® database. Архивировано из первоисточника 22 марта 2012. Проверено 5 августа 2007.

См. также