Цепной комплекс | это... Что такое Цепной комплекс? (original) (raw)
Цепно́й компле́кс — основное понятие гомологической алгебры.
Содержание
- 1 Цепной комплекс
- 2 Коцепной комплекс
- 3 Гомологии и когомологии
- 4 Гомоморфизмы цепных комплексов
- 5 Цепная гомотопия
- 6 Литература
Цепной комплекс
Цепной комплексом называется последовательность модулей и гомоморфизмов , называемых граничными операторами или дифференциалами,
такая что . Элементы называются n-мерными цепями, элементы ядра — n-мерными циклами, элементы образа — n-мерными границами. Из следует, что (т.н.полуточность). Если к тому же , то такой комплекс называется точным.
Цепные комплексы модулей над фиксированным кольцом образуют категорию с мофизмами , где последовательность морфизмов , такая что коммутирует с дифференциалом, то есть .
Коцепной комплекс
Коцепной комплекс — понятие, двойственное цепному комплексу. Он определяется как последовательность модулей и гомоморфизмов , таких что
Коцепной комплекс, как и цепной, является полуточной последовательностью.
Свойства и понятия, связанные с коцепными комплексами, двойственны аналогичным понятиям и свойствам цепных комплексов.
Гомологии и когомологии
n-мерная группа гомологий цепного комплекса является его мерой точности в n-ом члене и определяется как
. Для точного комплекса
Аналогично определяется n-мерная группа когомологий коцепного комплекса:
Гомоморфизмы цепных комплексов
Гомоморфизмом цепных комплексов и называется такое отображение что следующая диаграмма оказывается коммутативной:
Гомоморфизм цепных комплексов индуцирует гомоморфизм их групп гомологий.
Цепная гомотопия
Цепная гомотопия между гомоморфизмами комплексов и - это такой гомоморфизм цепных комплексов и степени +1 (т.е. ), для которого
Для коцепных комплексов соответствующая коммутативная диаграмма имеет вид
Литература
- Картан А., Эйленберг С. Гомологическая алгебра, — М.: Издательство Иностранной Литературы, 1960.
- Маклейн С. Гомология, — М.: Мир, 1966.
- Дольд А. Лекции по алгебраической топологии, — М.: Мир, 1976.