Аэрогель | это... Что такое Аэрогель? (original) (raw)
Блок аэрогеля в руке
Кирпич массой 2,5 кг стоит на куске аэрогеля массой 2,38 г
Аэроге́ли (от лат. aer — воздух и gelatus — замороженный) — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность и т. д. Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.
Структура
Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 % объёма. Как правило, этот процент достигает 90—99, а плотность составляет от 1 до 150 кг/м³. По структуре аэрогели представляют собой древовидную сеть из объединенных в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.
История
Первенство в изобретении признано за химиком Стивеном Кистлером (Steven Kistler) из Тихоокеанского колледжа (College of the Pacific) в Стоктоне, Калифорния, США, опубликовавшего в 1931 году в журнале Nature свои результаты.
Кистлер заменял жидкость в геле на метанол, а потом нагревал гель под давлением до достижения критической температуры метанола (240 °C). Метанол уходил из геля, не уменьшаясь в объёме; соответственно, и гель «высыхал», почти не ужимаясь.
Свойства
Аэрогели — хорошие теплоизоляторы
На ощупь аэрогели напоминают легкую, но твердую пену, что-то вроде пенопласта. При сильной нагрузке аэрогель трескается, но в целом это весьма прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше собственного веса. Аэрогели, в особенности кварцевые — хорошие теплоизоляторы. Они также очень гигроскопичны.
По внешнему виду аэрогели полупрозрачны. За счёт релеевского рассеяния света на древовидных структурах они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем.
Виды аэрогелей
Наиболее распространены кварцевые аэрогели, по плотности среди твердых тел они уступают лишь металлическим микрорешёткам чья плотность может достигать — 0,9 кг/м³, что на одну десятую меньше лучших показателей плотности аэрогелей — 1 кг/м³. В воздушной среде при нормальных условиях плотность такой металлической микрорешётки равна 1,9 кг/м³ за счёт внутрирешёточного воздуха. Это в 500 раз меньше плотности воды и всего в 1,5 раза больше плотности воздуха. Кварцевые аэрогели пропускают свет в мягком ультрафиолете и видимой области (с длиной волны больше 300 нм) и инфракрасном диапазоне, однако в инфракрасной области присутствуют типичные для кварца, получаемого обезвоживанием силикагелей, полосы гидроксила при 3500 см−1 и 1600 см−1[1]. Благодаря чрезвычайно низкой теплопроводности (~0,017 Вт/(м·К) в воздухе при атмосферном давлении),[2], меньшей, чем теплопроводность воздуха (0,024 Вт/(м·К)), они применяются в строительстве в качестве теплоизолирующих и теплоудерживающих материалов. Температура плавления кварцевого аэрогеля составляет 1200 °C.
Углеродные аэрогели состоят из наночастиц, ковалентно связанных друг с другом. Они электропроводны и могут использоваться в качестве электродов в конденсаторах. За счет очень большой площади внутренней поверхности (до 800 м²/грамм) углеродные аэрогели нашли применение в производстве суперконденсаторов (ионисторов) емкостью в тысячи фарад. В настоящее время достигнуты показатели в 104 Ф/грамм и 77 Ф/см³. Углеродные аэрогели отражают всего 0,3 % излучения в диапазоне длин волн от 0,25 до 14,3 мкм, что делает их эффективными поглотителями солнечного света.
Глинозёмные аэрогели из оксида алюминия с добавками других металлов используются в качестве катализаторов. На базе алюмооксидных аэрогелей с добавками гадолиния и тербия в НАСА был разработан детектор высокоскоростных соударений: в месте столкновения частицы с поверхностью происходит флюоресценция, интенсивность которой зависит от скорости соударения.
Использование
132 ячейки с аэрогелем аппарата Стардаст (NASA)
Помимо многочисленных технических применений, обусловленных вышеперечисленными уникальными свойствами, аэрогель знаменит прежде всего использованием в проекте «Стардаст» в качестве материала для ловушек космической пыли.
Поскольку показатель преломления аэрогелей занимает промежуточное положение между показателями преломления газообразных и жидких (твёрдых) веществ, аэрогель используется как радиатор в черенковских детекторах заряженных частиц.
Аэрогели могут использоваться в качестве газовых и жидкостных фильтров.
Аэрогель на основе оксида железа с алюминиевыми наночастицами может служить взрывчаткой (разработка Ливерморской национальной лаборатории им. Лоуренса, США).
В начале 2006 некоторые компании, например, United Nuclear[3], заявили о начале продаж аэрогеля организациям и частным лицам. В зависимости от размера и формы образца, цена составляет от 25(фрагменты)до25 (фрагменты) до 25(фрагменты)до125 (кусочек, помещающийся на ладони).
См. также
- Пенометалл
- Металлическая микрорешётка — 0,9 кг/м³
- Аэрографит (англ.) — 0,2 кг/м³
Примечания
- ↑ Optical properties of Silica aerogels // Enviromental Technology Division of E.O. Lawrence Berkeley National Laboratory
- ↑ Thermal properties of Silica aerogels // Enviromental Technology Division of E.O. Lawrence Berkeley National Laboratory
- ↑ Официальный сайт United Nuclear
Ссылки
Аэрогель на Викискладе? |
---|
- Часто задаваемые вопросы об аэрогеле (проект «Стардаст») (англ.)
- Тепловые свойства кремниевого аэрогеля (англ.)
- Научный блог, посвящённый аэрогелю и всему, что с ним связано (англ.)
Термодинамические состояния вещества | |
---|---|
Твёрдое тело | Аморфное • Кристаллы • Аэрогель (Температура плавления • Сублимация) |
Жидкость | Электролит • Перегретая • Переохлаждённая • Расплав (Критическая точка • Температура кипения) |
Газ | Пар |
Плазма | Электромагнитная • Кварк-глюонная • Глазма |
См. также | Сверхкритическая жидкость • Вырожденный газ • Конденсат Бозе — Эйнштейна • Странная материя • Кривая охлаждения • Твёрдый гелий (λ-точка) • Квантовая жидкость (Сверхтекучесть • Сверхтекучее твёрдое тело) • Дисперсная система (Раствор • Коллоидные • Грубодисперсная • Свободнодисперсная коллоидная (Дым • Золи)) • Термодинамическая фаза • Фазовый переход • Нормальные и стандартные условия • Статистика Ферми — Дирака • Уравнение состояния • Теория катастроф |