§19.2 Definitions ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals (original) (raw)
Contents
- §19.2(i) General Elliptic Integrals
- §19.2(ii) Legendre’s Integrals
- §19.2(iii) Bulirsch’s Integrals
- §19.2(iv) A Related Function: RC(x,y)
§19.2(i) General Elliptic Integrals
Let s2(t) be a cubic or quartic polynomial in t with simple zeros, and let r(s,t) be a rational function of s and tcontaining at least one odd power of s. Then
is called an elliptic integral. Because s2 is a polynomial, we have
where pj is a polynomial in t while ρ and σ are rational functions of t. Thus the elliptic part of (19.2.1) is
§19.2(ii) Legendre’s Integrals
Assume 1−sin2ϕ∈ℂ∖(−∞,0] and1−k2sin2ϕ∈ℂ∖(−∞,0], except that one of them may be 0, and 1−α2sin2ϕ∈ℂ∖{0}. Then
19.2.4 | F(ϕ,k) | =∫0ϕdθ1−k2sin2θ=∫0sinϕdt1−t21−k2t2, |
---|---|---|
ⓘ Defines: F(ϕ,k): Legendre’s incomplete elliptic integral of the first kind Symbols: dx: differential of x,∫: integral,sinz: sine function,ϕ: real or complex argument andk: real or complex modulus Referenced by: §19.5,§19.6(ii) Permalink: http://dlmf.nist.gov/19.2.E4 Encodings: TeX, pMML, png See also: Annotations for §19.2(ii),§19.2 andCh.19 | ||
19.2.5 | E(ϕ,k) | =∫0ϕ1−k2sin2θdθ=∫0sinϕ1−k2t21−t2dt. |
ⓘ Defines: E(ϕ,k): Legendre’s incomplete elliptic integral of the second kind Symbols: dx: differential of x,∫: integral,sinz: sine function,ϕ: real or complex argument andk: real or complex modulus Referenced by: §19.6(iii),§22.16(ii) Permalink: http://dlmf.nist.gov/19.2.E5 Encodings: TeX, pMML, png See also: Annotations for §19.2(ii),§19.2 andCh.19 | ||
19.2.6 | D(ϕ,k) | =∫0ϕsin2θdθ1−k2sin2θ=∫0sinϕt2dt1−t21−k2t2=(F(ϕ,k)−E(ϕ,k))/k2. |
ⓘ Defines: D(ϕ,k): incomplete elliptic integral of Legendre’s type Symbols: dx: differential of x,F(ϕ,k): Legendre’s incomplete elliptic integral of the first kind,E(ϕ,k): Legendre’s incomplete elliptic integral of the second kind,∫: integral,sinz: sine function,ϕ: real or complex argument andk: real or complex modulus Referenced by: §19.25(i),§19.36(i) Permalink: http://dlmf.nist.gov/19.2.E6 Encodings: TeX, pMML, png See also: Annotations for §19.2(ii),§19.2 andCh.19 |
19.2.7 | Π(ϕ,α2,k)=∫0ϕdθ1−k2sin2θ(1−α2sin2θ)=∫0sinϕdt1−t21−k2t2(1−α2t2). |
---|---|
The paths of integration are the line segments connecting the limits of integration. The integral for E(ϕ,k) is well defined ifk2=sin2ϕ=1, and the Cauchy principal value (§1.4(v)) of Π(ϕ,α2,k) is taken if1−α2sin2ϕ vanishes at an interior point of the integration path. Also, if k2 and α2 are real, thenΠ(ϕ,α2,k) is called a circular or_hyperbolic case_ according as α2(α2−k2)(α2−1) is negative or positive. The circular and hyperbolic cases alternate in the four intervals of the real line separated by the points α2=0,k2,1.
The cases with ϕ=π/2 are the complete integrals:
The principal branch of K(k) and E(k) is|ph(1−k2)|≤π, that is, the branch-cuts are (−∞,−1]∪[1,+∞). The principal values of K(k) and E(k) are even functions.
Legendre’s complementary complete elliptic integrals are defined via
19.2.8_1 | K′(k) | =∫01dt1−t21−(1−k2)t2, |
---|---|---|
ⓘ Defines: K′(k): Legendre’s complementary complete elliptic integral of the first kind Symbols: dx: differential of x,∫: integral andk: real or complex modulus Referenced by: §19.2(ii) Permalink: http://dlmf.nist.gov/19.2.E8_1 Encodings: TeX, pMML, png Addition (effective with 1.1.10): This equation was added. See also: Annotations for §19.2(ii),§19.2 andCh.19 | ||
19.2.8_2 | E′(k) | =∫011−(1−k2)t21−t2dt, |
ⓘ Defines: E′(k): Legendre’s complementary complete elliptic integral of the second kind Symbols: dx: differential of x,∫: integral andk: real or complex modulus Referenced by: §19.2(ii) Permalink: http://dlmf.nist.gov/19.2.E8_2 Encodings: TeX, pMML, png Addition (effective with 1.1.10): This equation was added. See also: Annotations for §19.2(ii),§19.2 andCh.19 |
with a branch point at k=0 and principal branch|phk|≤π. Let k′=1−k2. Then
| 19.2.9 | K′(k) | ={K(k′),|phk|≤12π,K(k′)∓2iK(−k),12π<±phk<π, | | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------- | ------------------------------------------------------ | | E′(k) | ={E(k′),|phk|≤12π,E(k′)∓2i(K(−k)−E(−k)),12π<±phk<π. | | | ⓘ Symbols: π: the ratio of the circumference of a circle to its diameter,K′(k): Legendre’s complementary complete elliptic integral of the first kind,E′(k): Legendre’s complementary complete elliptic integral of the second kind,K(k): Legendre’s complete elliptic integral of the first kind,E(k): Legendre’s complete elliptic integral of the second kind,i: imaginary unit,ph: phase,k: real or complex modulus andk′: complementary modulus Referenced by: §19.2(ii),§22.11,Erratum (V1.1.10) for Subsection 19.2(ii) and Equation (19.2.9),Erratum (V1.1.10) for Subsection 19.2(ii) and Equation (19.2.9) Permalink: http://dlmf.nist.gov/19.2.E9 Encodings: TeX, TeX, pMML, pMML, png, png Correction (effective with 1.1.10): This equation has been updated so that it has correct analytic continuation. See also: Annotations for §19.2(ii),§19.2 andCh.19 | | |
For more details on the analytical continuation of these complete elliptic integrals see Lawden (1989, §§8.12–8.14).
If m is an integer, then
19.2.10 | F(mπ±ϕ,k) | =2mK(k)±F(ϕ,k), |
---|---|---|
E(mπ±ϕ,k) | =2mE(k)±E(ϕ,k), | |
D(mπ±ϕ,k) | =2mD(k)±D(ϕ,k). | |
ⓘ Symbols: π: the ratio of the circumference of a circle to its diameter,D(k): complete elliptic integral of Legendre’s type,K(k): Legendre’s complete elliptic integral of the first kind,E(k): Legendre’s complete elliptic integral of the second kind,F(ϕ,k): Legendre’s incomplete elliptic integral of the first kind,E(ϕ,k): Legendre’s incomplete elliptic integral of the second kind,D(ϕ,k): incomplete elliptic integral of Legendre’s type,m: nonnegative integer,ϕ: real or complex argument andk: real or complex modulus Referenced by: §19.14(i),§19.7(ii),§19.7(ii) Permalink: http://dlmf.nist.gov/19.2.E10 Encodings: TeX, TeX, TeX, pMML, pMML, pMML, png, png, png See also: Annotations for §19.2(ii),§19.2 andCh.19 |
§19.2(iii) Bulirsch’s Integrals
Bulirsch’s integrals are linear combinations of Legendre’s integrals that are chosen to facilitate computational application of Bartky’s transformation (Bartky (1938)). Three are defined by
19.2.11 | cel(kc,p,a,b)=∫0π/2acos2θ+bsin2θcos2θ+psin2θdθcos2θ+kc2sin2θ, |
---|---|
19.2.11_5 | el1(x,kc)=∫0arctanx1cos2θ+kc2sin2θdθ, |
---|---|
19.2.12 | el2(x,kc,a,b)=∫0arctanxa+btan2θ(1+tan2θ)(1+kc2tan2θ)dθ. |
---|---|
Here a,b,p are real parameters, and kc and x are real or complex variables, with p≠0, kc≠0. If −∞<p<0, then the integral in (19.2.11) is a Cauchy principal value.
With
19.2.13 | kc | =k′, |
---|---|---|
p | =1−α2, | |
x | =tanϕ, | |
ⓘ Defines: kc: change of variable (locally),p: change of variable (locally) andx: change of variable (locally) Symbols: tanz: tangent function,ϕ: real or complex argument,k′: complementary modulus andα2: real or complex parameter Permalink: http://dlmf.nist.gov/19.2.E13 Encodings: TeX, TeX, TeX, pMML, pMML, pMML, png, png, png See also: Annotations for §19.2(iii),§19.2 andCh.19 |
special cases include
19.2.14 | K(k) | =cel(kc,1,1,1), |
---|---|---|
E(k) | =cel(kc,1,1,kc2), | |
D(k) | =cel(kc,1,0,1), | |
(E(k)−k′2K(k))/k2 | =cel(kc,1,1,0), | |
Π(α2,k) | =cel(kc,p,1,1), | |
ⓘ Symbols: cel(kc,p,a,b): Bulirsch’s complete elliptic integral,D(k): complete elliptic integral of Legendre’s type,K(k): Legendre’s complete elliptic integral of the first kind,E(k): Legendre’s complete elliptic integral of the second kind,Π(α2,k): Legendre’s complete elliptic integral of the third kind,k: real or complex modulus,k′: complementary modulus,α2: real or complex parameter,p: real parameter not equal to zero andkc: real or complex variable not equal to zero Permalink: http://dlmf.nist.gov/19.2.E14 Encodings: TeX, TeX, TeX, TeX, TeX, pMML, pMML, pMML, pMML, pMML, png, png, png, png, png See also: Annotations for §19.2(iii),§19.2 andCh.19 |
and
19.2.15 | F(ϕ,k) | =el1(x,kc)=el2(x,kc,1,1), |
---|---|---|
E(ϕ,k) | =el2(x,kc,1,kc2), | |
D(ϕ,k) | =el2(x,kc,0,1). | |
ⓘ Symbols: el1(x,kc): Bulirsch’s incomplete elliptic integral of the first kind,el2(x,kc,a,b): Bulirsch’s incomplete elliptic integral of the second kind,F(ϕ,k): Legendre’s incomplete elliptic integral of the first kind,E(ϕ,k): Legendre’s incomplete elliptic integral of the second kind,D(ϕ,k): incomplete elliptic integral of Legendre’s type,ϕ: real or complex argument,k: real or complex modulus,kc: real or complex variable not equal to zero andx: real or complex variable Referenced by: (19.2.11_5) Permalink: http://dlmf.nist.gov/19.2.E15 Encodings: TeX, TeX, TeX, pMML, pMML, pMML, png, png, png See also: Annotations for §19.2(iii),§19.2 andCh.19 |
The integrals are complete if x=∞. If 1<k≤1/sinϕ, then kc is pure imaginary.
Lastly, corresponding to Legendre’s incomplete integral of the third kind we have
19.2.16 | el3(x,kc,p)=∫0arctanxdθ(cos2θ+psin2θ)cos2θ+kc2sin2θ=Π(arctanx,1−p,k), |
---|---|
x2≠−1/p. | |
ⓘ Defines: el3(x,kc,p): Bulirsch’s incomplete elliptic integral of the third kind Symbols: cosz: cosine function,dx: differential of x,Π(ϕ,α2,k): Legendre’s incomplete elliptic integral of the third kind,∫: integral,arctanz: arctangent function,sinz: sine function,k: real or complex modulus,p: real parameter not equal to zero,kc: real or complex variable not equal to zero andx: real or complex variable Permalink: http://dlmf.nist.gov/19.2.E16 Encodings: TeX, pMML, png See also: Annotations for §19.2(iii),§19.2 andCh.19 |
§19.2(iv) A Related Function: RC(x,y)
Let x∈ℂ∖(−∞,0) and y∈ℂ∖{0}. We define
where the Cauchy principal value is taken if y<0. Formulas involvingΠ(ϕ,α2,k) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using RC(x,y).
In (19.2.18)–(19.2.22) the inverse trigonometric and hyperbolic functions assume their principal values (§§4.23(ii) and4.37(ii)). When x and y are positive, RC(x,y) is an inverse circular function if x<y and an inverse hyperbolic function (or logarithm) if x>y:
19.2.18 | RC(x,y)=1y−xarctany−xx=1y−xarccosx/y, |
---|---|
0≤x<y, | |
ⓘ Symbols: RC(x,y): Carlson’s combination of inverse circular and inverse hyperbolic functions,arccosz: arccosine function andarctanz: arctangent function Referenced by: §19.2(iv) Permalink: http://dlmf.nist.gov/19.2.E18 Encodings: TeX, pMML, png See also: Annotations for §19.2(iv),§19.2 andCh.19 |
19.2.19 | RC(x,y)=1x−yarctanhx−yx=1x−ylnx+x−yy, |
---|---|
0<y<x. | |
ⓘ Symbols: RC(x,y): Carlson’s combination of inverse circular and inverse hyperbolic functions,arctanhz: inverse hyperbolic tangent function andlnz: principal branch of logarithm function Referenced by: §19.26(i),Figure 19.3.2,Figure 19.3.2,§19.36(ii) Permalink: http://dlmf.nist.gov/19.2.E19 Encodings: TeX, pMML, png See also: Annotations for §19.2(iv),§19.2 andCh.19 |
The Cauchy principal value is hyperbolic:
19.2.20 | RC(x,y)=xx−yRC(x−y,−y)=1x−yarctanhxx−y=1x−ylnx+x−y−y, |
---|---|
y<0≤x. | |
ⓘ Symbols: RC(x,y): Carlson’s combination of inverse circular and inverse hyperbolic functions,arctanhz: inverse hyperbolic tangent function andlnz: principal branch of logarithm function Referenced by: §19.2(iv),§19.20(iii),§19.25(i),Figure 19.3.2,Figure 19.3.2,§19.36(i) Permalink: http://dlmf.nist.gov/19.2.E20 Encodings: TeX, pMML, png See also: Annotations for §19.2(iv),§19.2 andCh.19 |
For the special cases of RC(x,x) and RC(0,y) see (19.6.15).
If the line segment with endpoints x and y lies inℂ∖(−∞,0], then
19.2.22 | RC(x,y)=2π∫0π/2RC(y,xcos2θ+ysin2θ)dθ. |
---|---|