§19.6 Special Cases ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals (original) (raw)
Contents
- §19.6(i) Complete Elliptic Integrals
- §19.6(ii) F(ϕ,k)
- §19.6(iii) E(ϕ,k)
- §19.6(iv) Π(ϕ,α2,k)
- §19.6(v) RC(x,y)
§19.6(i) Complete Elliptic Integrals
19.6.1 |
K(0) |
=E(0)=K′(1)=E′(1)=12π, |
K(1) |
=K′(0)=∞, |
|
E(1) |
=E′(0)=1. |
|
ⓘ Symbols: π: the ratio of the circumference of a circle to its diameter,K′(k): Legendre’s complementary complete elliptic integral of the first kind,E′(k): Legendre’s complementary complete elliptic integral of the second kind,K(k): Legendre’s complete elliptic integral of the first kind andE(k): Legendre’s complete elliptic integral of the second kind Permalink: http://dlmf.nist.gov/19.6.E1 Encodings: TeX, TeX, TeX, pMML, pMML, pMML, png, png, png See also: Annotations for §19.6(i),§19.6 andCh.19 |
|
|
19.6.2 |
Π(k2,k) |
=E(k)/k′2, |
k2<1, |
|
|
Π(−k,k) |
=14π(1+k)−1+12K(k), |
|
0≤k2<1. |
|
|
ⓘ Symbols: π: the ratio of the circumference of a circle to its diameter,K(k): Legendre’s complete elliptic integral of the first kind,E(k): Legendre’s complete elliptic integral of the second kind,Π(α2,k): Legendre’s complete elliptic integral of the third kind,k: real or complex modulus andk′: complementary modulus Referenced by: §19.6(i) Permalink: http://dlmf.nist.gov/19.6.E2 Encodings: TeX, TeX, pMML, pMML, png, png See also: Annotations for §19.6(i),§19.6 andCh.19 |
|
|
19.6.3 |
Π(α2,0)=π/(21−α2),Π(0,k)=K(k), |
−∞<α2<1. |
|
ⓘ Symbols: π: the ratio of the circumference of a circle to its diameter,K(k): Legendre’s complete elliptic integral of the first kind,Π(α2,k): Legendre’s complete elliptic integral of the third kind,k: real or complex modulus andα2: real or complex parameter Permalink: http://dlmf.nist.gov/19.6.E3 Encodings: TeX, pMML, png See also: Annotations for §19.6(i),§19.6 andCh.19 |
|
19.6.4 |
Π(α2,k) |
→+∞, |
α2→1−, |
|
|
Π(α2,k) |
→∞sign(1−α2), |
|
k2→1−. |
|
|
ⓘ Symbols: Π(α2,k): Legendre’s complete elliptic integral of the third kind,signx: sign of,k: real or complex modulus andα2: real or complex parameter Permalink: http://dlmf.nist.gov/19.6.E4 Encodings: TeX, TeX, pMML, pMML, png, png See also: Annotations for §19.6(i),§19.6 andCh.19 |
|
|
If 1<α2<∞, then the Cauchy principal value satisfies
19.6.5 |
Π(α2,k)=K(k)−Π(k2/α2,k), |
|
|
and
19.6.6 |
Π(α2,0) |
=0, |
Π(α2,k) |
→K(k)−(E(k)/k′2), |
|
α2→1+, |
|
|
Π(α2,k) |
→−∞, |
|
k2→1−. |
|
|
ⓘ Symbols: K(k): Legendre’s complete elliptic integral of the first kind,E(k): Legendre’s complete elliptic integral of the second kind,Π(α2,k): Legendre’s complete elliptic integral of the third kind,k: real or complex modulus,k′: complementary modulus andα2: real or complex parameter Referenced by: Figure 19.3.6,Figure 19.3.6,Figure 19.3.6,§19.6(i) Permalink: http://dlmf.nist.gov/19.6.E6 Encodings: TeX, TeX, TeX, pMML, pMML, pMML, png, png, png See also: Annotations for §19.6(i),§19.6 andCh.19 |
|
|
Exact values of K(k) and E(k) for various special values of k are given in Byrd and Friedman (1971, 111.10 and 111.11) andCooper et al. (2006).
§19.6(ii) F(ϕ,k)
19.6.7 |
F(0,k) |
=0, |
F(ϕ,0) |
=ϕ, |
|
F(12π,1) |
=∞, |
|
F(12π,k) |
=K(k), |
|
limϕ→0F(ϕ,k)/ϕ |
=1. |
|
ⓘ Symbols: π: the ratio of the circumference of a circle to its diameter,K(k): Legendre’s complete elliptic integral of the first kind,F(ϕ,k): Legendre’s incomplete elliptic integral of the first kind,ϕ: real or complex argument andk: real or complex modulus Permalink: http://dlmf.nist.gov/19.6.E7 Encodings: TeX, TeX, TeX, TeX, TeX, pMML, pMML, pMML, pMML, pMML, png, png, png, png, png See also: Annotations for §19.6(ii),§19.6 andCh.19 |
|
|
19.6.8 |
F(ϕ,1)=(sinϕ)RC(1,cos2ϕ)=gd−1(ϕ). |
|
|
For the inverse Gudermannian function gd−1(ϕ) see §4.23(viii). Compare also (19.10.2).
§19.6(iii) E(ϕ,k)
19.6.9 |
E(0,k) |
=0, |
E(ϕ,0) |
=ϕ, |
|
E(12π,1) |
=1, |
|
E(ϕ,1) |
=sinϕ, |
|
E(12π,k) |
=E(k). |
|
ⓘ Symbols: π: the ratio of the circumference of a circle to its diameter,E(k): Legendre’s complete elliptic integral of the second kind,E(ϕ,k): Legendre’s incomplete elliptic integral of the second kind,sinz: sine function,ϕ: real or complex argument andk: real or complex modulus Permalink: http://dlmf.nist.gov/19.6.E9 Encodings: TeX, TeX, TeX, TeX, TeX, pMML, pMML, pMML, pMML, pMML, png, png, png, png, png See also: Annotations for §19.6(iii),§19.6 andCh.19 |
|
|
§19.6(iv) Π(ϕ,α2,k)
Circular and hyperbolic cases, including Cauchy principal values, are unified by using RC(x,y). Let c=csc2ϕ≠α2 andΔ=1−k2sin2ϕ. Then
19.6.11 |
Π(0,α2,k) |
=0, |
Π(ϕ,0,0) |
=ϕ, |
|
Π(ϕ,1,0) |
=tanϕ. |
|
ⓘ Symbols: Π(ϕ,α2,k): Legendre’s incomplete elliptic integral of the third kind,tanz: tangent function,ϕ: real or complex argument,k: real or complex modulus andα2: real or complex parameter Permalink: http://dlmf.nist.gov/19.6.E11 Encodings: TeX, TeX, TeX, pMML, pMML, pMML, png, png, png See also: Annotations for §19.6(iv),§19.6 andCh.19 |
|
|
19.6.12 |
Π(ϕ,α2,0) |
=RC(c−1,c−α2), |
Π(ϕ,α2,1) |
=11−α2(RC(c,c−1)−α2RC(c,c−α2)), |
|
Π(ϕ,1,1) |
=12(RC(c,c−1)+c(c−1)−1). |
|
ⓘ Symbols: RC(x,y): Carlson’s combination of inverse circular and inverse hyperbolic functions,Π(ϕ,α2,k): Legendre’s incomplete elliptic integral of the third kind,ϕ: real or complex argument andα2: real or complex parameter Referenced by: §19.6(iv),§19.9(i),§19.9(ii) Permalink: http://dlmf.nist.gov/19.6.E12 Encodings: TeX, TeX, TeX, pMML, pMML, pMML, png, png, png See also: Annotations for §19.6(iv),§19.6 andCh.19 |
|
|
19.6.13 |
Π(ϕ,0,k) |
=F(ϕ,k), |
Π(ϕ,k2,k) |
=1k′2(E(ϕ,k)−k2Δsinϕcosϕ), |
|
Π(ϕ,1,k) |
=F(ϕ,k)−1k′2(E(ϕ,k)−Δtanϕ). |
|
ⓘ Symbols: cosz: cosine function,F(ϕ,k): Legendre’s incomplete elliptic integral of the first kind,E(ϕ,k): Legendre’s incomplete elliptic integral of the second kind,Π(ϕ,α2,k): Legendre’s incomplete elliptic integral of the third kind,sinz: sine function,tanz: tangent function,ϕ: real or complex argument,k: real or complex modulus,k′: complementary modulus andΔ Referenced by: §19.36(ii),§19.6(iv) Permalink: http://dlmf.nist.gov/19.6.E13 Encodings: TeX, TeX, TeX, pMML, pMML, pMML, png, png, png See also: Annotations for §19.6(iv),§19.6 andCh.19 |
|
|
19.6.14 |
Π(12π,α2,k) |
=Π(α2,k), |
limϕ→0Π(ϕ,α2,k)/ϕ |
=1. |
|
ⓘ Symbols: π: the ratio of the circumference of a circle to its diameter,Π(α2,k): Legendre’s complete elliptic integral of the third kind,Π(ϕ,α2,k): Legendre’s incomplete elliptic integral of the third kind,ϕ: real or complex argument,k: real or complex modulus andα2: real or complex parameter Permalink: http://dlmf.nist.gov/19.6.E14 Encodings: TeX, TeX, pMML, pMML, png, png See also: Annotations for §19.6(iv),§19.6 andCh.19 |
|
|
For the Cauchy principal value of Π(ϕ,α2,k) whenα2>c, see §19.7(iii).
§19.6(v) RC(x,y)
19.6.15 |
RC(x,x) |
=x−1/2, |
RC(λx,λy) |
=λ−1/2RC(x,y), |
|
RC(x,y) |
→+∞, |
|
y→0+ or y→0−, x>0, |
|
|
RC(0,y) |
=12πy−1/2, |
|
|phy |
<π, |
|
RC(0,y) |
=0, |
|
y<0. |
|
|
ⓘ Symbols: RC(x,y): Carlson’s combination of inverse circular and inverse hyperbolic functions,π: the ratio of the circumference of a circle to its diameter andph: phase Referenced by: §19.2(iv),§19.2(iv),§19.20(iii),§19.6(i),§19.9(i) Permalink: http://dlmf.nist.gov/19.6.E15 Encodings: TeX, TeX, TeX, TeX, TeX, pMML, pMML, pMML, pMML, pMML, png, png, png, png, png See also: Annotations for §19.6(v),§19.6 andCh.19 |
|
|