Ord in std::cmp - Rust (original) (raw)
Trait std::cmp::Ord
1.0.0 · source ·
pub trait Ord: Eq + PartialOrd {
// Required method
fn cmp(&self, other: &Self) -> Ordering;
// Provided methods
fn max(self, other: Self) -> Self
where Self: Sized { ... }
fn min(self, other: Self) -> Self
where Self: Sized { ... }
fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized + PartialOrd { ... }
}
Expand description
Trait for types that form a total order.
Implementations must be consistent with the PartialOrd implementation, and ensuremax
, min
, and clamp
are consistent with cmp
:
partial_cmp(a, b) == Some(cmp(a, b))
.max(a, b) == max_by(a, b, cmp)
(ensured by the default implementation).min(a, b) == min_by(a, b, cmp)
(ensured by the default implementation).- For
a.clamp(min, max)
, see the method docs(ensured by the default implementation).
It’s easy to accidentally make cmp
and partial_cmp
disagree by deriving some of the traits and manually implementing others.
Violating these requirements is a logic error. The behavior resulting from a logic error is not specified, but users of the trait must ensure that such logic errors do not result in undefined behavior. This means that unsafe
code must not rely on the correctness of these methods.
Corollaries
From the above and the requirements of PartialOrd
, it follows that for all a
, b
and c
:
- exactly one of
a < b
,a == b
ora > b
is true; and <
is transitive:a < b
andb < c
impliesa < c
. The same must hold for both==
and>
.
Mathematically speaking, the <
operator defines a strict weak order. In cases where ==
conforms to mathematical equality, it also defines a strict total order.
Derivable
This trait can be used with #[derive]
.
When derive
d on structs, it will produce alexicographic ordering based on the top-to-bottom declaration order of the struct’s members.
When derive
d on enums, variants are ordered by their discriminants. By default, the discriminant is smallest for variants at the top, and largest for variants at the bottom. Here’s an example:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top,
Bottom,
}
assert!(E::Top < E::Bottom);
However, manually setting the discriminants can override this default behavior:
#[derive(PartialEq, Eq, PartialOrd, Ord)]
enum E {
Top = 2,
Bottom = 1,
}
assert!(E::Bottom < E::Top);
Lexicographical comparison
Lexicographical comparison is an operation with the following properties:
- Two sequences are compared element by element.
- The first mismatching element defines which sequence is lexicographically less or greater than the other.
- If one sequence is a prefix of another, the shorter sequence is lexicographically less than the other.
- If two sequences have equivalent elements and are of the same length, then the sequences are lexicographically equal.
- An empty sequence is lexicographically less than any non-empty sequence.
- Two empty sequences are lexicographically equal.
How can I implement Ord?
Ord
requires that the type also be PartialOrd and Eq (which requires PartialEq).
Then you must define an implementation for cmp. You may find it useful to usecmp on your type’s fields.
Here’s an example where you want to sort people by height only, disregarding id
and name
:
use std::cmp::Ordering;
#[derive(Eq)]
struct Person {
id: u32,
name: String,
height: u32,
}
impl Ord for Person {
fn cmp(&self, other: &Self) -> Ordering {
self.height.cmp(&other.height)
}
}
impl PartialOrd for Person {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for Person {
fn eq(&self, other: &Self) -> bool {
self.height == other.height
}
}
This method returns an Ordering between self
and other
.
By convention, self.cmp(&other)
returns the ordering matching the expressionself <operator> other
if true.
Examples
use std::cmp::Ordering;
assert_eq!(5.cmp(&10), Ordering::Less);
assert_eq!(10.cmp(&5), Ordering::Greater);
assert_eq!(5.cmp(&5), Ordering::Equal);
1.21.0 · source
Compares and returns the maximum of two values.
Returns the second argument if the comparison determines them to be equal.
Examples
assert_eq!(1.max(2), 2);
assert_eq!(2.max(2), 2);
1.21.0 · source
Compares and returns the minimum of two values.
Returns the first argument if the comparison determines them to be equal.
Examples
assert_eq!(1.min(2), 1);
assert_eq!(2.min(2), 2);
1.50.0 · source
Restrict a value to a certain interval.
Returns max
if self
is greater than max
, and min
if self
is less than min
. Otherwise this returns self
.
Panics
Panics if min > max
.
Examples
assert_eq!((-3).clamp(-2, 1), -2);
assert_eq!(0.clamp(-2, 1), 0);
assert_eq!(2.clamp(-2, 1), 1);