PathBuf in std::path - Rust (original) (raw)
Struct PathBuf
1.0.0 · Source
pub struct PathBuf { /* private fields */ }
Expand description
An owned, mutable path (akin to String).
This type provides methods like push and set_extension that mutate the path in place. It also implements Deref to Path, meaning that all methods on Path slices are available on PathBuf
values as well.
More details about the overall approach can be found in the module documentation.
§Examples
You can use push to build up a PathBuf
from components:
use std::path::PathBuf;
let mut path = PathBuf::new();
path.push(r"C:\");
path.push("windows");
path.push("system32");
path.set_extension("dll");
However, push is best used for dynamic situations. This is a better way to do this when you know all of the components ahead of time:
use std::path::PathBuf;
let path: PathBuf = [r"C:\", "windows", "system32.dll"].iter().collect();
We can still do better than this! Since these are all strings, we can useFrom::from
:
use std::path::PathBuf;
let path = PathBuf::from(r"C:\windows\system32.dll");
Which method works best depends on what kind of situation you’re in.
Note that PathBuf
does not always sanitize arguments, for examplepush allows paths built from strings which include separators:
use std::path::PathBuf;
let mut path = PathBuf::new();
path.push(r"C:\");
path.push("windows");
path.push(r"..\otherdir");
path.push("system32");
The behavior of PathBuf
may be changed to a panic on such inputs in the future. Extend::extend should be used to add multi-part paths.
1.0.0 · Source
Allocates an empty PathBuf
.
§Examples
use std::path::PathBuf;
let path = PathBuf::new();
1.44.0 · Source
Creates a new PathBuf
with a given capacity used to create the internal OsString. See with_capacity defined on OsString.
§Examples
use std::path::PathBuf;
let mut path = PathBuf::with_capacity(10);
let capacity = path.capacity();
// This push is done without reallocating
path.push(r"C:\");
assert_eq!(capacity, path.capacity());
1.0.0 · Source
Coerces to a Path slice.
§Examples
use std::path::{Path, PathBuf};
let p = PathBuf::from("/test");
assert_eq!(Path::new("/test"), p.as_path());
🔬This is a nightly-only experimental API. (os_string_pathbuf_leak
#125965)
Consumes and leaks the PathBuf
, returning a mutable reference to the contents,&'a mut Path
.
The caller has free choice over the returned lifetime, including ’static. Indeed, this function is ideally used for data that lives for the remainder of the program’s life, as dropping the returned reference will cause a memory leak.
It does not reallocate or shrink the PathBuf
, so the leaked allocation may include unused capacity that is not part of the returned slice. If you want to discard excess capacity, call into_boxed_path, and then Box::leak instead. However, keep in mind that trimming the capacity may result in a reallocation and copy.
1.0.0 · Source
Extends self
with path
.
If path
is absolute, it replaces the current path.
On Windows:
- if
path
has a root but no prefix (e.g.,\windows
), it replaces everything except for the prefix (if any) ofself
. - if
path
has a prefix but no root, it replacesself
. - if
self
has a verbatim prefix (e.g.\\?\C:\windows
) andpath
is not empty, the new path is normalized: all references to.
and..
are removed.
Consider using Path::join if you need a new PathBuf
instead of using this function on a cloned PathBuf
.
§Examples
Pushing a relative path extends the existing path:
use std::path::PathBuf;
let mut path = PathBuf::from("/tmp");
path.push("file.bk");
assert_eq!(path, PathBuf::from("/tmp/file.bk"));
Pushing an absolute path replaces the existing path:
use std::path::PathBuf;
let mut path = PathBuf::from("/tmp");
path.push("/etc");
assert_eq!(path, PathBuf::from("/etc"));
1.0.0 · Source
Truncates self
to self.parent.
Returns false
and does nothing if self.parent is None. Otherwise, returns true
.
§Examples
use std::path::{Path, PathBuf};
let mut p = PathBuf::from("/spirited/away.rs");
p.pop();
assert_eq!(Path::new("/spirited"), p);
p.pop();
assert_eq!(Path::new("/"), p);
1.0.0 · Source
Updates self.file_name to file_name
.
If self.file_name was None, this is equivalent to pushingfile_name
.
Otherwise it is equivalent to calling pop and then pushingfile_name
. The new path will be a sibling of the original path. (That is, it will have the same parent.)
The argument is not sanitized, so can include separators. This behavior may be changed to a panic in the future.
§Examples
use std::path::PathBuf;
let mut buf = PathBuf::from("/");
assert!(buf.file_name() == None);
buf.set_file_name("foo.txt");
assert!(buf == PathBuf::from("/foo.txt"));
assert!(buf.file_name().is_some());
buf.set_file_name("bar.txt");
assert!(buf == PathBuf::from("/bar.txt"));
buf.set_file_name("baz");
assert!(buf == PathBuf::from("/baz"));
buf.set_file_name("../b/c.txt");
assert!(buf == PathBuf::from("/../b/c.txt"));
buf.set_file_name("baz");
assert!(buf == PathBuf::from("/../b/baz"));
1.0.0 · Source
Updates self.extension to Some(extension)
or to None
ifextension
is empty.
Returns false
and does nothing if self.file_name is None, returns true
and updates the extension otherwise.
If self.extension is None, the extension is added; otherwise it is replaced.
If extension
is the empty string, self.extension will be Noneafterwards, not Some("")
.
§Panics
Panics if the passed extension contains a path separator (seeis_separator).
§Caveats
The new extension
may contain dots and will be used in its entirety, but only the part after the final dot will be reflected inself.extension.
If the file stem contains internal dots and extension
is empty, part of the old file stem will be considered the new self.extension.
See the examples below.
§Examples
use std::path::{Path, PathBuf};
let mut p = PathBuf::from("/feel/the");
p.set_extension("force");
assert_eq!(Path::new("/feel/the.force"), p.as_path());
p.set_extension("dark.side");
assert_eq!(Path::new("/feel/the.dark.side"), p.as_path());
p.set_extension("cookie");
assert_eq!(Path::new("/feel/the.dark.cookie"), p.as_path());
p.set_extension("");
assert_eq!(Path::new("/feel/the.dark"), p.as_path());
p.set_extension("");
assert_eq!(Path::new("/feel/the"), p.as_path());
p.set_extension("");
assert_eq!(Path::new("/feel/the"), p.as_path());
🔬This is a nightly-only experimental API. (path_add_extension
#127292)
Append self.extension with extension
.
Returns false
and does nothing if self.file_name is None, returns true
and updates the extension otherwise.
§Caveats
The appended extension
may contain dots and will be used in its entirety, but only the part after the final dot will be reflected inself.extension.
See the examples below.
§Examples
#![feature(path_add_extension)]
use std::path::{Path, PathBuf};
let mut p = PathBuf::from("/feel/the");
p.add_extension("formatted");
assert_eq!(Path::new("/feel/the.formatted"), p.as_path());
p.add_extension("dark.side");
assert_eq!(Path::new("/feel/the.formatted.dark.side"), p.as_path());
p.set_extension("cookie");
assert_eq!(Path::new("/feel/the.formatted.dark.cookie"), p.as_path());
p.set_extension("");
assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
p.add_extension("");
assert_eq!(Path::new("/feel/the.formatted.dark"), p.as_path());
1.70.0 · Source
Yields a mutable reference to the underlying OsString instance.
§Examples
use std::path::{Path, PathBuf};
let mut path = PathBuf::from("/foo");
path.push("bar");
assert_eq!(path, Path::new("/foo/bar"));
// OsString's `push` does not add a separator.
path.as_mut_os_string().push("baz");
assert_eq!(path, Path::new("/foo/barbaz"));
1.0.0 · Source
Consumes the PathBuf
, yielding its internal OsString storage.
§Examples
use std::path::PathBuf;
let p = PathBuf::from("/the/head");
let os_str = p.into_os_string();
1.20.0 · Source
Converts this PathBuf
into a boxed Path.
1.44.0 · Source
1.44.0 · Source
Invokes clear on the underlying instance of OsString.
1.44.0 · Source
1.63.0 · Source
1.44.0 · Source
1.63.0 · Source
1.44.0 · Source
1.56.0 · Source
1.0.0 · Source
Yields the underlying OsStr slice.
§Examples
use std::path::Path;
let os_str = Path::new("foo.txt").as_os_str();
assert_eq!(os_str, std::ffi::OsStr::new("foo.txt"));
1.70.0 · Source
Yields a mutable reference to the underlying OsStr slice.
§Examples
use std::path::{Path, PathBuf};
let mut path = PathBuf::from("Foo.TXT");
assert_ne!(path, Path::new("foo.txt"));
path.as_mut_os_str().make_ascii_lowercase();
assert_eq!(path, Path::new("foo.txt"));
1.0.0 · Source
Yields a &str slice if the Path
is valid unicode.
This conversion may entail doing a check for UTF-8 validity. Note that validation is performed because non-UTF-8 strings are perfectly valid for some OS.
§Examples
use std::path::Path;
let path = Path::new("foo.txt");
assert_eq!(path.to_str(), Some("foo.txt"));
1.0.0 · Source
Converts a Path
to a Cow.
Any non-UTF-8 sequences are replaced withU+FFFD REPLACEMENT CHARACTER.
§Examples
Calling to_string_lossy
on a Path
with valid unicode:
use std::path::Path;
let path = Path::new("foo.txt");
assert_eq!(path.to_string_lossy(), "foo.txt");
Had path
contained invalid unicode, the to_string_lossy
call might have returned "fo�.txt"
.
1.0.0 · Source
Converts a Path
to an owned PathBuf.
§Examples
use std::path::{Path, PathBuf};
let path_buf = Path::new("foo.txt").to_path_buf();
assert_eq!(path_buf, PathBuf::from("foo.txt"));
1.0.0 · Source
Returns true
if the Path
is absolute, i.e., if it is independent of the current directory.
- On Unix, a path is absolute if it starts with the root, so
is_absolute
and has_root are equivalent. - On Windows, a path is absolute if it has a prefix and starts with the root:
c:\windows
is absolute, whilec:temp
and\temp
are not.
§Examples
use std::path::Path;
assert!(!Path::new("foo.txt").is_absolute());
1.0.0 · Source
Returns true
if the Path
is relative, i.e., not absolute.
See is_absolute’s documentation for more details.
§Examples
use std::path::Path;
assert!(Path::new("foo.txt").is_relative());
1.0.0 · Source
Returns true
if the Path
has a root.
- On Unix, a path has a root if it begins with
/
. - On Windows, a path has a root if it:
- has no prefix and begins with a separator, e.g.,
\windows
- has a prefix followed by a separator, e.g.,
c:\windows
but notc:windows
- has any non-disk prefix, e.g.,
\\server\share
- has no prefix and begins with a separator, e.g.,
§Examples
use std::path::Path;
assert!(Path::new("/etc/passwd").has_root());
1.0.0 · Source
Returns the Path
without its final component, if there is one.
This means it returns Some("")
for relative paths with one component.
Returns None if the path terminates in a root or prefix, or if it’s the empty string.
§Examples
use std::path::Path;
let path = Path::new("/foo/bar");
let parent = path.parent().unwrap();
assert_eq!(parent, Path::new("/foo"));
let grand_parent = parent.parent().unwrap();
assert_eq!(grand_parent, Path::new("/"));
assert_eq!(grand_parent.parent(), None);
let relative_path = Path::new("foo/bar");
let parent = relative_path.parent();
assert_eq!(parent, Some(Path::new("foo")));
let grand_parent = parent.and_then(Path::parent);
assert_eq!(grand_parent, Some(Path::new("")));
let great_grand_parent = grand_parent.and_then(Path::parent);
assert_eq!(great_grand_parent, None);
1.28.0 · Source
Produces an iterator over Path
and its ancestors.
The iterator will yield the Path
that is returned if the parent method is used zero or more times. If the parent method returns None, the iterator will do likewise. The iterator will always yield at least one value, namely Some(&self)
. Next it will yield&self.parent()
, &self.parent().and_then(Path::parent)
and so on.
§Examples
use std::path::Path;
let mut ancestors = Path::new("/foo/bar").ancestors();
assert_eq!(ancestors.next(), Some(Path::new("/foo/bar")));
assert_eq!(ancestors.next(), Some(Path::new("/foo")));
assert_eq!(ancestors.next(), Some(Path::new("/")));
assert_eq!(ancestors.next(), None);
let mut ancestors = Path::new("../foo/bar").ancestors();
assert_eq!(ancestors.next(), Some(Path::new("../foo/bar")));
assert_eq!(ancestors.next(), Some(Path::new("../foo")));
assert_eq!(ancestors.next(), Some(Path::new("..")));
assert_eq!(ancestors.next(), Some(Path::new("")));
assert_eq!(ancestors.next(), None);
1.0.0 · Source
Returns the final component of the Path
, if there is one.
If the path is a normal file, this is the file name. If it’s the path of a directory, this is the directory name.
Returns None if the path terminates in ..
.
§Examples
use std::path::Path;
use std::ffi::OsStr;
assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
assert_eq!(None, Path::new("foo.txt/..").file_name());
assert_eq!(None, Path::new("/").file_name());
1.7.0 · Source
Returns a path that, when joined onto base
, yields self
.
§Errors
If base
is not a prefix of self
(i.e., starts_withreturns false
), returns Err.
§Examples
use std::path::{Path, PathBuf};
let path = Path::new("/test/haha/foo.txt");
assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
assert!(path.strip_prefix("test").is_err());
assert!(path.strip_prefix("/te").is_err());
assert!(path.strip_prefix("/haha").is_err());
let prefix = PathBuf::from("/test/");
assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
1.0.0 · Source
Determines whether base
is a prefix of self
.
Only considers whole path components to match.
§Examples
use std::path::Path;
let path = Path::new("/etc/passwd");
assert!(path.starts_with("/etc"));
assert!(path.starts_with("/etc/"));
assert!(path.starts_with("/etc/passwd"));
assert!(path.starts_with("/etc/passwd/")); // extra slash is okay
assert!(path.starts_with("/etc/passwd///")); // multiple extra slashes are okay
assert!(!path.starts_with("/e"));
assert!(!path.starts_with("/etc/passwd.txt"));
assert!(!Path::new("/etc/foo.rs").starts_with("/etc/foo"));
1.0.0 · Source
Determines whether child
is a suffix of self
.
Only considers whole path components to match.
§Examples
use std::path::Path;
let path = Path::new("/etc/resolv.conf");
assert!(path.ends_with("resolv.conf"));
assert!(path.ends_with("etc/resolv.conf"));
assert!(path.ends_with("/etc/resolv.conf"));
assert!(!path.ends_with("/resolv.conf"));
assert!(!path.ends_with("conf")); // use .extension() instead
1.0.0 · Source
Extracts the stem (non-extension) portion of self.file_name.
The stem is:
- None, if there is no file name;
- The entire file name if there is no embedded
.
; - The entire file name if the file name begins with
.
and has no other.
s within; - Otherwise, the portion of the file name before the final
.
§Examples
use std::path::Path;
assert_eq!("foo", Path::new("foo.rs").file_stem().unwrap());
assert_eq!("foo.tar", Path::new("foo.tar.gz").file_stem().unwrap());
§See Also
This method is similar to Path::file_prefix, which extracts the portion of the file name before the first .
🔬This is a nightly-only experimental API. (path_file_prefix
#86319)
Extracts the prefix of self.file_name.
The prefix is:
- None, if there is no file name;
- The entire file name if there is no embedded
.
; - The portion of the file name before the first non-beginning
.
; - The entire file name if the file name begins with
.
and has no other.
s within; - The portion of the file name before the second
.
if the file name begins with.
§Examples
use std::path::Path;
assert_eq!("foo", Path::new("foo.rs").file_prefix().unwrap());
assert_eq!("foo", Path::new("foo.tar.gz").file_prefix().unwrap());
§See Also
This method is similar to Path::file_stem, which extracts the portion of the file name before the last .
1.0.0 · Source
Extracts the extension (without the leading dot) of self.file_name, if possible.
The extension is:
- None, if there is no file name;
- None, if there is no embedded
.
; - None, if the file name begins with
.
and has no other.
s within; - Otherwise, the portion of the file name after the final
.
§Examples
use std::path::Path;
assert_eq!("rs", Path::new("foo.rs").extension().unwrap());
assert_eq!("gz", Path::new("foo.tar.gz").extension().unwrap());
1.0.0 · Source
Creates an owned PathBuf with path
adjoined to self
.
If path
is absolute, it replaces the current path.
See PathBuf::push for more details on what it means to adjoin a path.
§Examples
use std::path::{Path, PathBuf};
assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
assert_eq!(Path::new("/etc").join("/bin/sh"), PathBuf::from("/bin/sh"));
1.0.0 · Source
Creates an owned PathBuf like self
but with the given file name.
See PathBuf::set_file_name for more details.
§Examples
use std::path::{Path, PathBuf};
let path = Path::new("/tmp/foo.png");
assert_eq!(path.with_file_name("bar"), PathBuf::from("/tmp/bar"));
assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
let path = Path::new("/tmp");
assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
1.0.0 · Source
Creates an owned PathBuf like self
but with the given extension.
See PathBuf::set_extension for more details.
§Examples
use std::path::{Path, PathBuf};
let path = Path::new("foo.rs");
assert_eq!(path.with_extension("txt"), PathBuf::from("foo.txt"));
let path = Path::new("foo.tar.gz");
assert_eq!(path.with_extension(""), PathBuf::from("foo.tar"));
assert_eq!(path.with_extension("xz"), PathBuf::from("foo.tar.xz"));
assert_eq!(path.with_extension("").with_extension("txt"), PathBuf::from("foo.txt"));
🔬This is a nightly-only experimental API. (path_add_extension
#127292)
Creates an owned PathBuf like self
but with the extension added.
See PathBuf::add_extension for more details.
§Examples
#![feature(path_add_extension)]
use std::path::{Path, PathBuf};
let path = Path::new("foo.rs");
assert_eq!(path.with_added_extension("txt"), PathBuf::from("foo.rs.txt"));
let path = Path::new("foo.tar.gz");
assert_eq!(path.with_added_extension(""), PathBuf::from("foo.tar.gz"));
assert_eq!(path.with_added_extension("xz"), PathBuf::from("foo.tar.gz.xz"));
assert_eq!(path.with_added_extension("").with_added_extension("txt"), PathBuf::from("foo.tar.gz.txt"));
1.0.0 · Source
Produces an iterator over the Components of the path.
When parsing the path, there is a small amount of normalization:
- Repeated separators are ignored, so
a/b
anda//b
both havea
andb
as components. - Occurrences of
.
are normalized away, except if they are at the beginning of the path. For example,a/./b
,a/b/
,a/b/.
anda/b
all havea
andb
as components, but./a/b
starts with an additional CurDir component. - A trailing slash is normalized away,
/a/b
and/a/b/
are equivalent.
Note that no other normalization takes place; in particular, a/c
and a/b/../c
are distinct, to account for the possibility that b
is a symbolic link (so its parent isn’t a
).
§Examples
use std::path::{Path, Component};
use std::ffi::OsStr;
let mut components = Path::new("/tmp/foo.txt").components();
assert_eq!(components.next(), Some(Component::RootDir));
assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
assert_eq!(components.next(), None)
1.0.0 · Source
Produces an iterator over the path’s components viewed as OsStrslices.
For more information about the particulars of how the path is separated into components, see components.
§Examples
use std::path::{self, Path};
use std::ffi::OsStr;
let mut it = Path::new("/tmp/foo.txt").iter();
assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
assert_eq!(it.next(), Some(OsStr::new("tmp")));
assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
assert_eq!(it.next(), None)
1.0.0 · Source
Returns an object that implements Display for safely printing paths that may contain non-Unicode data. This may perform lossy conversion, depending on the platform. If you would like an implementation which escapes the path please use Debug instead.
§Examples
use std::path::Path;
let path = Path::new("/tmp/foo.rs");
println!("{}", path.display());
1.5.0 · Source
Queries the file system to get information about a file, directory, etc.
This function will traverse symbolic links to query information about the destination file.
This is an alias to fs::metadata.
§Examples
use std::path::Path;
let path = Path::new("/Minas/tirith");
let metadata = path.metadata().expect("metadata call failed");
println!("{:?}", metadata.file_type());
1.5.0 · Source
Queries the metadata about a file without following symlinks.
This is an alias to fs::symlink_metadata.
§Examples
use std::path::Path;
let path = Path::new("/Minas/tirith");
let metadata = path.symlink_metadata().expect("symlink_metadata call failed");
println!("{:?}", metadata.file_type());
1.5.0 · Source
Returns the canonical, absolute form of the path with all intermediate components normalized and symbolic links resolved.
This is an alias to fs::canonicalize.
§Examples
use std::path::{Path, PathBuf};
let path = Path::new("/foo/test/../test/bar.rs");
assert_eq!(path.canonicalize().unwrap(), PathBuf::from("/foo/test/bar.rs"));
1.5.0 · Source
Reads a symbolic link, returning the file that the link points to.
This is an alias to fs::read_link.
§Examples
use std::path::Path;
let path = Path::new("/laputa/sky_castle.rs");
let path_link = path.read_link().expect("read_link call failed");
1.5.0 · Source
Returns an iterator over the entries within a directory.
The iterator will yield instances of [io::Result](../io/type.Result.html "type std::io::Result")<[fs::DirEntry](../fs/struct.DirEntry.html "struct std::fs::DirEntry")>
. New errors may be encountered after an iterator is initially constructed.
This is an alias to fs::read_dir.
§Examples
use std::path::Path;
let path = Path::new("/laputa");
for entry in path.read_dir().expect("read_dir call failed") {
if let Ok(entry) = entry {
println!("{:?}", entry.path());
}
}
1.5.0 · Source
Returns true
if the path points at an existing entity.
Warning: this method may be error-prone, consider using try_exists() instead! It also has a risk of introducing time-of-check to time-of-use (TOCTOU) bugs.
This function will traverse symbolic links to query information about the destination file.
If you cannot access the metadata of the file, e.g. because of a permission error or broken symbolic links, this will return false
.
§Examples
use std::path::Path;
assert!(!Path::new("does_not_exist.txt").exists());
§See Also
This is a convenience function that coerces errors to false. If you want to check errors, call Path::try_exists.
1.63.0 · Source
Returns Ok(true)
if the path points at an existing entity.
This function will traverse symbolic links to query information about the destination file. In case of broken symbolic links this will return Ok(false)
.
Path::exists() only checks whether or not a path was both found and readable. By contrast, try_exists
will return Ok(true)
or Ok(false)
, respectively, if the path was verified to exist or not exist. If its existence can neither be confirmed nor denied, it will propagate an Err(_)
instead. This can be the case if e.g. listing permission is denied on one of the parent directories.
Note that while this avoids some pitfalls of the exists()
method, it still can not prevent time-of-check to time-of-use (TOCTOU) bugs. You should only use it in scenarios where those bugs are not an issue.
This is an alias for std::fs::exists.
§Examples
use std::path::Path;
assert!(!Path::new("does_not_exist.txt").try_exists().expect("Can't check existence of file does_not_exist.txt"));
assert!(Path::new("/root/secret_file.txt").try_exists().is_err());
1.5.0 · Source
Returns true
if the path exists on disk and is pointing at a regular file.
This function will traverse symbolic links to query information about the destination file.
If you cannot access the metadata of the file, e.g. because of a permission error or broken symbolic links, this will return false
.
§Examples
use std::path::Path;
assert_eq!(Path::new("./is_a_directory/").is_file(), false);
assert_eq!(Path::new("a_file.txt").is_file(), true);
§See Also
This is a convenience function that coerces errors to false. If you want to check errors, call fs::metadata and handle its Result. Then callfs::Metadata::is_file if it was Ok.
When the goal is simply to read from (or write to) the source, the most reliable way to test the source can be read (or written to) is to open it. Only using is_file
can break workflows like diff <( prog_a )
on a Unix-like system for example. See fs::File::open orfs::OpenOptions::open for more information.
1.5.0 · Source
Returns true
if the path exists on disk and is pointing at a directory.
This function will traverse symbolic links to query information about the destination file.
If you cannot access the metadata of the file, e.g. because of a permission error or broken symbolic links, this will return false
.
§Examples
use std::path::Path;
assert_eq!(Path::new("./is_a_directory/").is_dir(), true);
assert_eq!(Path::new("a_file.txt").is_dir(), false);
§See Also
This is a convenience function that coerces errors to false. If you want to check errors, call fs::metadata and handle its Result. Then callfs::Metadata::is_dir if it was Ok.
1.58.0 · Source
Returns true
if the path exists on disk and is pointing at a symbolic link.
This function will not traverse symbolic links. In case of a broken symbolic link this will also return true.
If you cannot access the directory containing the file, e.g., because of a permission error, this will return false.
§Examples
use std::path::Path;
use std::os::unix::fs::symlink;
let link_path = Path::new("link");
symlink("/origin_does_not_exist/", link_path).unwrap();
assert_eq!(link_path.is_symlink(), true);
assert_eq!(link_path.exists(), false);
§See Also
This is a convenience function that coerces errors to false. If you want to check errors, call fs::symlink_metadata and handle its Result. Then callfs::Metadata::is_symlink if it was Ok.
Converts this type into a shared reference of the (usually inferred) input type.
Converts this type into a shared reference of the (usually inferred) input type.
Clones the contents of source
into self
.
This method is preferred over simply assigning source.clone()
to self
, as it avoids reallocation if possible.
Returns a copy of the value. Read more
The resulting type after dereferencing.
Dereferences the value.
Mutably dereferences the value.
Extends a collection with the contents of an iterator. Read more
🔬This is a nightly-only experimental API. (extend_one
#72631)
Extends a collection with exactly one element.
🔬This is a nightly-only experimental API. (extend_one
#72631)
Reserves capacity in a collection for the given number of additional elements. Read more
Creates a clone-on-write pointer from a reference toPathBuf.
This conversion does not clone or allocate.
Converts a clone-on-write pointer to an owned path.
Converting from a Cow::Owned
does not clone or allocate.
Converts a PathBuf into a [Box](../boxed/struct.Box.html "struct std::boxed::Box")<[Path](struct.Path.html "struct std::path::Path")>
.
This conversion currently should not allocate memory, but this behavior is not guaranteed on all platforms or in all future versions.
Creates a clone-on-write pointer from an owned instance of PathBuf.
This conversion does not clone or allocate.
The associated error which can be returned from parsing.
Parses a string s
to return a value of this type. Read more
The type of the elements being iterated over.
Which kind of iterator are we turning this into?
Creates an iterator from a value. Read more
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Tests for self
and other
values to be equal, and is used by ==
.
Tests for !=
. The default implementation is almost always sufficient, and should not be overridden without very good reason.
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
Tests less than (for self
and other
) and is used by the <
operator. Read more
Tests less than or equal to (for self
and other
) and is used by the<=
operator. Read more
Tests greater than (for self
and other
) and is used by the >
operator. Read more
Tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more