jax.numpy.dstack — JAX documentation (original) (raw)
jax.numpy.dstack#
jax.numpy.dstack(tup, dtype=None)[source]#
Stack arrays depth-wise.
JAX implementation of numpy.dstack().
For arrays of three or more dimensions, this is equivalent tojax.numpy.concatenate() with axis=2
.
Parameters:
- tup (np.ndarray | Array | Sequence [ ArrayLike ]) – a sequence of arrays to stack; each must have the same shape along all but the third axis. Input arrays will be promoted to at least rank 3. If a single array is given it will be treated equivalently to tup = unstack(tup), but the implementation will avoid explicit unstacking.
- dtype (DTypeLike | None | None) – optional dtype of the resulting array. If not specified, the dtype will be determined via type promotion rules described in Type promotion semantics.
Returns:
the stacked result.
Return type:
See also
- jax.numpy.stack(): stack along arbitrary axes
- jax.numpy.concatenate(): concatenation along existing axes.
- jax.numpy.vstack(): stack vertically, i.e. along axis 0.
- jax.numpy.hstack(): stack horizontally, i.e. along axis 1.
Examples
Scalar values:
jnp.dstack([1, 2, 3]) Array([[[1, 2, 3]]], dtype=int32, weak_type=True)
1D arrays:
x = jnp.arange(3) y = jnp.ones(3) jnp.dstack([x, y]) Array([[[0., 1.], [1., 1.], [2., 1.]]], dtype=float32)
2D arrays:
x = x.reshape(1, 3) y = y.reshape(1, 3) jnp.dstack([x, y]) Array([[[0., 1.], [1., 1.], [2., 1.]]], dtype=float32)