jax.numpy.vstack — JAX documentation (original) (raw)
jax.numpy.vstack#
jax.numpy.vstack(tup, dtype=None)[source]#
Vertically stack arrays.
JAX implementation of numpy.vstack().
For arrays of two or more dimensions, this is equivalent tojax.numpy.concatenate() with axis=0
.
Parameters:
- tup (np.ndarray | Array | Sequence [ ArrayLike ]) – a sequence of arrays to stack; each must have the same shape along all but the first axis. If a single array is given it will be treated equivalently to tup = unstack(tup), but the implementation will avoid explicit unstacking.
- dtype (DTypeLike | None | None) – optional dtype of the resulting array. If not specified, the dtype will be determined via type promotion rules described in Type promotion semantics.
Returns:
the stacked result.
Return type:
See also
- jax.numpy.stack(): stack along arbitrary axes
- jax.numpy.concatenate(): concatenation along existing axes.
- jax.numpy.hstack(): stack horizontally, i.e. along axis 1.
- jax.numpy.dstack(): stack depth-wise, i.e. along axis 2.
Examples
Scalar values:
jnp.vstack([1, 2, 3]) Array([[1], [2], [3]], dtype=int32, weak_type=True)
1D arrays:
x = jnp.arange(4) y = jnp.ones(4) jnp.vstack([x, y]) Array([[0., 1., 2., 3.], [1., 1., 1., 1.]], dtype=float32)
2D arrays:
x = x.reshape(1, 4) y = y.reshape(1, 4) jnp.vstack([x, y]) Array([[0., 1., 2., 3.], [1., 1., 1., 1.]], dtype=float32)