CubicCurve2D (Java Platform SE 6) (original) (raw)
java.awt.geom
Class CubicCurve2D
java.lang.Object
java.awt.geom.CubicCurve2D
All Implemented Interfaces:
Direct Known Subclasses:
CubicCurve2D.Double, CubicCurve2D.Float
public abstract class CubicCurve2D
extends Object
The CubicCurve2D
class defines a cubic parametric curve segment in (x,y)
coordinate space.
This class is only the abstract superclass for all objects which store a 2D cubic curve segment. The actual storage representation of the coordinates is left to the subclass.
Since:
1.2
Nested Class Summary | |
---|---|
static class | CubicCurve2D.Double A cubic parametric curve segment specified withdouble coordinates. |
static class | CubicCurve2D.Float A cubic parametric curve segment specified withfloat coordinates. |
Constructor Summary | |
---|---|
protected | CubicCurve2D() This is an abstract class that cannot be instantiated directly. |
Method Summary | |
---|---|
Object | clone() Creates a new object of the same class as this object. |
boolean | [contains](../../../java/awt/geom/CubicCurve2D.html#contains%28double, double%29)(double x, double y) Tests if the specified coordinates are inside the boundary of the Shape. |
boolean | [contains](../../../java/awt/geom/CubicCurve2D.html#contains%28double, double, double, double%29)(double x, double y, double w, double h) Tests if the interior of the Shape entirely contains the specified rectangular area. |
boolean | contains(Point2D p) Tests if a specified Point2D is inside the boundary of the Shape. |
boolean | contains(Rectangle2D r) Tests if the interior of the Shape entirely contains the specified Rectangle2D. |
Rectangle | getBounds() Returns an integer Rectangle that completely encloses theShape. |
abstract Point2D | getCtrlP1() Returns the first control point. |
abstract Point2D | getCtrlP2() Returns the second control point. |
abstract double | getCtrlX1() Returns the X coordinate of the first control point in double precision. |
abstract double | getCtrlX2() Returns the X coordinate of the second control point in double precision. |
abstract double | getCtrlY1() Returns the Y coordinate of the first control point in double precision. |
abstract double | getCtrlY2() Returns the Y coordinate of the second control point in double precision. |
double | getFlatness() Returns the flatness of this curve. |
static double | [getFlatness](../../../java/awt/geom/CubicCurve2D.html#getFlatness%28double[], int%29)(double[] coords, int offset) Returns the flatness of the cubic curve specified by the control points stored in the indicated array at the indicated index. |
static double | [getFlatness](../../../java/awt/geom/CubicCurve2D.html#getFlatness%28double, double, double, double, double, double, double, double%29)(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) Returns the flatness of the cubic curve specified by the indicated control points. |
double | getFlatnessSq() Returns the square of the flatness of this curve. |
static double | [getFlatnessSq](../../../java/awt/geom/CubicCurve2D.html#getFlatnessSq%28double[], int%29)(double[] coords, int offset) Returns the square of the flatness of the cubic curve specified by the control points stored in the indicated array at the indicated index. |
static double | [getFlatnessSq](../../../java/awt/geom/CubicCurve2D.html#getFlatnessSq%28double, double, double, double, double, double, double, double%29)(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) Returns the square of the flatness of the cubic curve specified by the indicated control points. |
abstract Point2D | getP1() Returns the start point. |
abstract Point2D | getP2() Returns the end point. |
PathIterator | getPathIterator(AffineTransform at) Returns an iteration object that defines the boundary of the shape. |
PathIterator | [getPathIterator](../../../java/awt/geom/CubicCurve2D.html#getPathIterator%28java.awt.geom.AffineTransform, double%29)(AffineTransform at, double flatness) Return an iteration object that defines the boundary of the flattened shape. |
abstract double | getX1() Returns the X coordinate of the start point in double precision. |
abstract double | getX2() Returns the X coordinate of the end point in double precision. |
abstract double | getY1() Returns the Y coordinate of the start point in double precision. |
abstract double | getY2() Returns the Y coordinate of the end point in double precision. |
boolean | [intersects](../../../java/awt/geom/CubicCurve2D.html#intersects%28double, double, double, double%29)(double x, double y, double w, double h) Tests if the interior of the Shape intersects the interior of a specified rectangular area. |
boolean | intersects(Rectangle2D r) Tests if the interior of the Shape intersects the interior of a specified Rectangle2D. |
void | setCurve(CubicCurve2D c) Sets the location of the end points and control points of this curve to the same as those in the specified CubicCurve2D. |
void | [setCurve](../../../java/awt/geom/CubicCurve2D.html#setCurve%28double[], int%29)(double[] coords, int offset) Sets the location of the end points and control points of this curve to the double coordinates at the specified offset in the specified array. |
abstract void | [setCurve](../../../java/awt/geom/CubicCurve2D.html#setCurve%28double, double, double, double, double, double, double, double%29)(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2) Sets the location of the end points and control points of this curve to the specified double coordinates. |
void | [setCurve](../../../java/awt/geom/CubicCurve2D.html#setCurve%28java.awt.geom.Point2D[], int%29)(Point2D[] pts, int offset) Sets the location of the end points and control points of this curve to the coordinates of the Point2D objects at the specified offset in the specified array. |
void | [setCurve](../../../java/awt/geom/CubicCurve2D.html#setCurve%28java.awt.geom.Point2D, java.awt.geom.Point2D, java.awt.geom.Point2D, java.awt.geom.Point2D%29)(Point2D p1,Point2D cp1,Point2D cp2,Point2D p2) Sets the location of the end points and control points of this curve to the specified Point2D coordinates. |
static int | solveCubic(double[] eqn) Solves the cubic whose coefficients are in the eqn array and places the non-complex roots back into the same array, returning the number of roots. |
static int | [solveCubic](../../../java/awt/geom/CubicCurve2D.html#solveCubic%28double[], double[]%29)(double[] eqn, double[] res) Solve the cubic whose coefficients are in the eqn array and place the non-complex roots into the res array, returning the number of roots. |
void | [subdivide](../../../java/awt/geom/CubicCurve2D.html#subdivide%28java.awt.geom.CubicCurve2D, java.awt.geom.CubicCurve2D%29)(CubicCurve2D left,CubicCurve2D right) Subdivides this cubic curve and stores the resulting two subdivided curves into the left and right curve parameters. |
static void | [subdivide](../../../java/awt/geom/CubicCurve2D.html#subdivide%28java.awt.geom.CubicCurve2D, java.awt.geom.CubicCurve2D, java.awt.geom.CubicCurve2D%29)(CubicCurve2D src,CubicCurve2D left,CubicCurve2D right) Subdivides the cubic curve specified by the src parameter and stores the resulting two subdivided curves into the left and right curve parameters. |
static void | [subdivide](../../../java/awt/geom/CubicCurve2D.html#subdivide%28double[], int, double[], int, double[], int%29)(double[] src, int srcoff, double[] left, int leftoff, double[] right, int rightoff) Subdivides the cubic curve specified by the coordinates stored in the src array at indices srcoff through (srcoff + 7) and stores the resulting two subdivided curves into the two result arrays at the corresponding indices. |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, [wait](../../../java/lang/Object.html#wait%28long, int%29) |
Methods inherited from interface java.awt.Shape |
---|
getBounds2D |
Constructor Detail |
---|
CubicCurve2D
protected CubicCurve2D()
This is an abstract class that cannot be instantiated directly. Type-specific implementation subclasses are available for instantiation and provide a number of formats for storing the information necessary to satisfy the various accessor methods below.
Since:
1.2
See Also:
CubicCurve2D.Float, CubicCurve2D.Double
Method Detail |
---|
getX1
public abstract double getX1()
Returns the X coordinate of the start point in double precision.
Returns:
the X coordinate of the start point of theCubicCurve2D
.
Since:
1.2
getY1
public abstract double getY1()
Returns the Y coordinate of the start point in double precision.
Returns:
the Y coordinate of the start point of theCubicCurve2D
.
Since:
1.2
getP1
public abstract Point2D getP1()
Returns the start point.
Returns:
a Point2D
that is the start point of the CubicCurve2D
.
Since:
1.2
getCtrlX1
public abstract double getCtrlX1()
Returns the X coordinate of the first control point in double precision.
Returns:
the X coordinate of the first control point of theCubicCurve2D
.
Since:
1.2
getCtrlY1
public abstract double getCtrlY1()
Returns the Y coordinate of the first control point in double precision.
Returns:
the Y coordinate of the first control point of theCubicCurve2D
.
Since:
1.2
getCtrlP1
public abstract Point2D getCtrlP1()
Returns the first control point.
Returns:
a Point2D
that is the first control point of the CubicCurve2D
.
Since:
1.2
getCtrlX2
public abstract double getCtrlX2()
Returns the X coordinate of the second control point in double precision.
Returns:
the X coordinate of the second control point of theCubicCurve2D
.
Since:
1.2
getCtrlY2
public abstract double getCtrlY2()
Returns the Y coordinate of the second control point in double precision.
Returns:
the Y coordinate of the second control point of theCubicCurve2D
.
Since:
1.2
getCtrlP2
public abstract Point2D getCtrlP2()
Returns the second control point.
Returns:
a Point2D
that is the second control point of the CubicCurve2D
.
Since:
1.2
getX2
public abstract double getX2()
Returns the X coordinate of the end point in double precision.
Returns:
the X coordinate of the end point of theCubicCurve2D
.
Since:
1.2
getY2
public abstract double getY2()
Returns the Y coordinate of the end point in double precision.
Returns:
the Y coordinate of the end point of theCubicCurve2D
.
Since:
1.2
getP2
public abstract Point2D getP2()
Returns the end point.
Returns:
a Point2D
that is the end point of the CubicCurve2D
.
Since:
1.2
setCurve
public abstract void setCurve(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2)
Sets the location of the end points and control points of this curve to the specified double coordinates.
Parameters:
x1
- the X coordinate used to set the start point of this CubicCurve2D
y1
- the Y coordinate used to set the start point of this CubicCurve2D
ctrlx1
- the X coordinate used to set the first control point of this CubicCurve2D
ctrly1
- the Y coordinate used to set the first control point of this CubicCurve2D
ctrlx2
- the X coordinate used to set the second control point of this CubicCurve2D
ctrly2
- the Y coordinate used to set the second control point of this CubicCurve2D
x2
- the X coordinate used to set the end point of this CubicCurve2D
y2
- the Y coordinate used to set the end point of this CubicCurve2D
Since:
1.2
setCurve
public void setCurve(double[] coords, int offset)
Sets the location of the end points and control points of this curve to the double coordinates at the specified offset in the specified array.
Parameters:
coords
- a double array containing coordinates
offset
- the index of coords
from which to begin setting the end points and control points of this curve to the coordinates contained in coords
Since:
1.2
setCurve
public void setCurve(Point2D p1, Point2D cp1, Point2D cp2, Point2D p2)
Sets the location of the end points and control points of this curve to the specified Point2D
coordinates.
Parameters:
p1
- the first specified Point2D
used to set the start point of this curve
cp1
- the second specified Point2D
used to set the first control point of this curve
cp2
- the third specified Point2D
used to set the second control point of this curve
p2
- the fourth specified Point2D
used to set the end point of this curve
Since:
1.2
setCurve
public void setCurve(Point2D[] pts, int offset)
Sets the location of the end points and control points of this curve to the coordinates of the Point2D
objects at the specified offset in the specified array.
Parameters:
pts
- an array of Point2D
objects
offset
- the index of pts
from which to begin setting the end points and control points of this curve to the points contained in pts
Since:
1.2
setCurve
public void setCurve(CubicCurve2D c)
Sets the location of the end points and control points of this curve to the same as those in the specified CubicCurve2D
.
Parameters:
c
- the specified CubicCurve2D
Since:
1.2
getFlatnessSq
public static double getFlatnessSq(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2)
Returns the square of the flatness of the cubic curve specified by the indicated control points. The flatness is the maximum distance of a control point from the line connecting the end points.
Parameters:
x1
- the X coordinate that specifies the start point of a CubicCurve2D
y1
- the Y coordinate that specifies the start point of a CubicCurve2D
ctrlx1
- the X coordinate that specifies the first control point of a CubicCurve2D
ctrly1
- the Y coordinate that specifies the first control point of a CubicCurve2D
ctrlx2
- the X coordinate that specifies the second control point of a CubicCurve2D
ctrly2
- the Y coordinate that specifies the second control point of a CubicCurve2D
x2
- the X coordinate that specifies the end point of a CubicCurve2D
y2
- the Y coordinate that specifies the end point of a CubicCurve2D
Returns:
the square of the flatness of the CubicCurve2D
represented by the specified coordinates.
Since:
1.2
getFlatness
public static double getFlatness(double x1, double y1, double ctrlx1, double ctrly1, double ctrlx2, double ctrly2, double x2, double y2)
Returns the flatness of the cubic curve specified by the indicated control points. The flatness is the maximum distance of a control point from the line connecting the end points.
Parameters:
x1
- the X coordinate that specifies the start point of a CubicCurve2D
y1
- the Y coordinate that specifies the start point of a CubicCurve2D
ctrlx1
- the X coordinate that specifies the first control point of a CubicCurve2D
ctrly1
- the Y coordinate that specifies the first control point of a CubicCurve2D
ctrlx2
- the X coordinate that specifies the second control point of a CubicCurve2D
ctrly2
- the Y coordinate that specifies the second control point of a CubicCurve2D
x2
- the X coordinate that specifies the end point of a CubicCurve2D
y2
- the Y coordinate that specifies the end point of a CubicCurve2D
Returns:
the flatness of the CubicCurve2D
represented by the specified coordinates.
Since:
1.2
getFlatnessSq
public static double getFlatnessSq(double[] coords, int offset)
Returns the square of the flatness of the cubic curve specified by the control points stored in the indicated array at the indicated index. The flatness is the maximum distance of a control point from the line connecting the end points.
Parameters:
coords
- an array containing coordinates
offset
- the index of coords
from which to begin getting the end points and control points of the curve
Returns:
the square of the flatness of the CubicCurve2D
specified by the coordinates in coords
at the specified offset.
Since:
1.2
getFlatness
public static double getFlatness(double[] coords, int offset)
Returns the flatness of the cubic curve specified by the control points stored in the indicated array at the indicated index. The flatness is the maximum distance of a control point from the line connecting the end points.
Parameters:
coords
- an array containing coordinates
offset
- the index of coords
from which to begin getting the end points and control points of the curve
Returns:
the flatness of the CubicCurve2D
specified by the coordinates in coords
at the specified offset.
Since:
1.2
getFlatnessSq
public double getFlatnessSq()
Returns the square of the flatness of this curve. The flatness is the maximum distance of a control point from the line connecting the end points.
Returns:
the square of the flatness of this curve.
Since:
1.2
getFlatness
public double getFlatness()
Returns the flatness of this curve. The flatness is the maximum distance of a control point from the line connecting the end points.
Returns:
the flatness of this curve.
Since:
1.2
subdivide
public void subdivide(CubicCurve2D left, CubicCurve2D right)
Subdivides this cubic curve and stores the resulting two subdivided curves into the left and right curve parameters. Either or both of the left and right objects may be the same as this object or null.
Parameters:
left
- the cubic curve object for storing for the left or first half of the subdivided curve
right
- the cubic curve object for storing for the right or second half of the subdivided curve
Since:
1.2
subdivide
public static void subdivide(CubicCurve2D src, CubicCurve2D left, CubicCurve2D right)
Subdivides the cubic curve specified by the src
parameter and stores the resulting two subdivided curves into the left
and right
curve parameters. Either or both of the left
and right
objects may be the same as the src
object or null
.
Parameters:
src
- the cubic curve to be subdivided
left
- the cubic curve object for storing the left or first half of the subdivided curve
right
- the cubic curve object for storing the right or second half of the subdivided curve
Since:
1.2
subdivide
public static void subdivide(double[] src, int srcoff, double[] left, int leftoff, double[] right, int rightoff)
Subdivides the cubic curve specified by the coordinates stored in the src
array at indices srcoff
through (srcoff
+ 7) and stores the resulting two subdivided curves into the two result arrays at the corresponding indices. Either or both of the left
and right
arrays may be null
or a reference to the same array as the src
array. Note that the last point in the first subdivided curve is the same as the first point in the second subdivided curve. Thus, it is possible to pass the same array for left
and right
and to use offsets, such as rightoff
equals (leftoff
+ 6), in order to avoid allocating extra storage for this common point.
Parameters:
src
- the array holding the coordinates for the source curve
srcoff
- the offset into the array of the beginning of the the 6 source coordinates
left
- the array for storing the coordinates for the first half of the subdivided curve
leftoff
- the offset into the array of the beginning of the the 6 left coordinates
right
- the array for storing the coordinates for the second half of the subdivided curve
rightoff
- the offset into the array of the beginning of the the 6 right coordinates
Since:
1.2
solveCubic
public static int solveCubic(double[] eqn)
Solves the cubic whose coefficients are in the eqn
array and places the non-complex roots back into the same array, returning the number of roots. The solved cubic is represented by the equation:
eqn = {c, b, a, d}
dx^3 + ax^2 + bx + c = 0
A return value of -1 is used to distinguish a constant equation that might be always 0 or never 0 from an equation that has no zeroes.
Parameters:
eqn
- an array containing coefficients for a cubic
Returns:
the number of roots, or -1 if the equation is a constant.
Since:
1.2
solveCubic
public static int solveCubic(double[] eqn, double[] res)
Solve the cubic whose coefficients are in the eqn
array and place the non-complex roots into the res
array, returning the number of roots. The cubic solved is represented by the equation: eqn = {c, b, a, d} dx^3 + ax^2 + bx + c = 0 A return value of -1 is used to distinguish a constant equation, which may be always 0 or never 0, from an equation which has no zeroes.
Parameters:
eqn
- the specified array of coefficients to use to solve the cubic equation
res
- the array that contains the non-complex roots resulting from the solution of the cubic equation
Returns:
the number of roots, or -1 if the equation is a constant
Since:
1.3
contains
public boolean contains(double x, double y)
Tests if the specified coordinates are inside the boundary of the Shape
.
Specified by:
[contains](../../../java/awt/Shape.html#contains%28double, double%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Parameters:
x
- the specified X coordinate to be tested
y
- the specified Y coordinate to be tested
Returns:
true
if the specified coordinates are inside the Shape
boundary; false
otherwise.
Since:
1.2
contains
public boolean contains(Point2D p)
Tests if a specified Point2D is inside the boundary of the Shape
.
Specified by:
[contains](../../../java/awt/Shape.html#contains%28java.awt.geom.Point2D%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Parameters:
p
- the specified Point2D
to be tested
Returns:
true
if the specified Point2D
is inside the boundary of the Shape
;false
otherwise.
Since:
1.2
intersects
public boolean intersects(double x, double y, double w, double h)
Tests if the interior of the Shape
intersects the interior of a specified rectangular area. The rectangular area is considered to intersect the Shape
if any point is contained in both the interior of the Shape
and the specified rectangular area.
The Shape.intersects()
method allows a Shape
implementation to conservatively return true
when:
- there is a high probability that the rectangular area and the
Shape
intersect, but - the calculations to accurately determine this intersection are prohibitively expensive.
This means that for some
Shapes
this method might returntrue
even though the rectangular area does not intersect theShape
. The Area class performs more accurate computations of geometric intersection than mostShape
objects and therefore can be used if a more precise answer is required.
Specified by:
[intersects](../../../java/awt/Shape.html#intersects%28double, double, double, double%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Parameters:
x
- the X coordinate of the upper-left corner of the specified rectangular area
y
- the Y coordinate of the upper-left corner of the specified rectangular area
w
- the width of the specified rectangular area
h
- the height of the specified rectangular area
Returns:
true
if the interior of the Shape
and the interior of the rectangular area intersect, or are both highly likely to intersect and intersection calculations would be too expensive to perform; false
otherwise.
Since:
1.2
See Also:
intersects
public boolean intersects(Rectangle2D r)
Tests if the interior of the Shape
intersects the interior of a specified Rectangle2D
. The Shape.intersects()
method allows a Shape
implementation to conservatively return true
when:
- there is a high probability that the
Rectangle2D
and theShape
intersect, but - the calculations to accurately determine this intersection are prohibitively expensive.
This means that for some
Shapes
this method might returntrue
even though theRectangle2D
does not intersect theShape
. The Area class performs more accurate computations of geometric intersection than mostShape
objects and therefore can be used if a more precise answer is required.
Specified by:
[intersects](../../../java/awt/Shape.html#intersects%28java.awt.geom.Rectangle2D%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Parameters:
r
- the specified Rectangle2D
Returns:
true
if the interior of the Shape
and the interior of the specified Rectangle2D
intersect, or are both highly likely to intersect and intersection calculations would be too expensive to perform; false
otherwise.
Since:
1.2
See Also:
[Shape.intersects(double, double, double, double)](../../../java/awt/Shape.html#intersects%28double, double, double, double%29)
contains
public boolean contains(double x, double y, double w, double h)
Tests if the interior of the Shape
entirely contains the specified rectangular area. All coordinates that lie inside the rectangular area must lie within the Shape
for the entire rectanglar area to be considered contained within the Shape
.
The Shape.contains()
method allows a Shape
implementation to conservatively return false
when:
- the
intersect
method returnstrue
and - the calculations to determine whether or not the
Shape
entirely contains the rectangular area are prohibitively expensive. This means that for someShapes
this method might returnfalse
even though theShape
contains the rectangular area. The Area class performs more accurate geometric computations than mostShape
objects and therefore can be used if a more precise answer is required.
Specified by:
[contains](../../../java/awt/Shape.html#contains%28double, double, double, double%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Parameters:
x
- the X coordinate of the upper-left corner of the specified rectangular area
y
- the Y coordinate of the upper-left corner of the specified rectangular area
w
- the width of the specified rectangular area
h
- the height of the specified rectangular area
Returns:
true
if the interior of the Shape
entirely contains the specified rectangular area;false
otherwise or, if the Shape
contains the rectangular area and the intersects
method returns true
and the containment calculations would be too expensive to perform.
Since:
1.2
See Also:
Area, [Shape.intersects(double, double, double, double)](../../../java/awt/Shape.html#intersects%28double, double, double, double%29)
contains
public boolean contains(Rectangle2D r)
Tests if the interior of the Shape
entirely contains the specified Rectangle2D
. The Shape.contains()
method allows a Shape
implementation to conservatively return false
when:
- the
intersect
method returnstrue
and - the calculations to determine whether or not the
Shape
entirely contains theRectangle2D
are prohibitively expensive. This means that for someShapes
this method might returnfalse
even though theShape
contains theRectangle2D
. The Area class performs more accurate geometric computations than mostShape
objects and therefore can be used if a more precise answer is required.
Specified by:
[contains](../../../java/awt/Shape.html#contains%28java.awt.geom.Rectangle2D%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Parameters:
r
- The specified Rectangle2D
Returns:
true
if the interior of the Shape
entirely contains the Rectangle2D
;false
otherwise or, if the Shape
contains the Rectangle2D
and theintersects
method returns true
and the containment calculations would be too expensive to perform.
Since:
1.2
See Also:
[Shape.contains(double, double, double, double)](../../../java/awt/Shape.html#contains%28double, double, double, double%29)
getBounds
public Rectangle getBounds()
Returns an integer Rectangle that completely encloses theShape
. Note that there is no guarantee that the returned Rectangle
is the smallest bounding box that encloses the Shape
, only that the Shape
lies entirely within the indicated Rectangle
. The returned Rectangle
might also fail to completely enclose the Shape
if the Shape
overflows the limited range of the integer data type. The getBounds2D
method generally returns a tighter bounding box due to its greater flexibility in representation.
Specified by:
[getBounds](../../../java/awt/Shape.html#getBounds%28%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Returns:
an integer Rectangle
that completely encloses the Shape
.
Since:
1.2
See Also:
getPathIterator
public PathIterator getPathIterator(AffineTransform at)
Returns an iteration object that defines the boundary of the shape. The iterator for this class is not multi-threaded safe, which means that this CubicCurve2D
class does not guarantee that modifications to the geometry of thisCubicCurve2D
object do not affect any iterations of that geometry that are already in process.
Specified by:
[getPathIterator](../../../java/awt/Shape.html#getPathIterator%28java.awt.geom.AffineTransform%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Parameters:
at
- an optional AffineTransform
to be applied to the coordinates as they are returned in the iteration, or null
if untransformed coordinates are desired
Returns:
the PathIterator
object that returns the geometry of the outline of this CubicCurve2D
, one segment at a time.
Since:
1.2
getPathIterator
public PathIterator getPathIterator(AffineTransform at, double flatness)
Return an iteration object that defines the boundary of the flattened shape. The iterator for this class is not multi-threaded safe, which means that this CubicCurve2D
class does not guarantee that modifications to the geometry of thisCubicCurve2D
object do not affect any iterations of that geometry that are already in process.
Specified by:
[getPathIterator](../../../java/awt/Shape.html#getPathIterator%28java.awt.geom.AffineTransform, double%29)
in interface [Shape](../../../java/awt/Shape.html "interface in java.awt")
Parameters:
at
- an optional AffineTransform
to be applied to the coordinates as they are returned in the iteration, or null
if untransformed coordinates are desired
flatness
- the maximum amount that the control points for a given curve can vary from colinear before a subdivided curve is replaced by a straight line connecting the end points
Returns:
the PathIterator
object that returns the geometry of the outline of this CubicCurve2D
, one segment at a time.
Since:
1.2
clone
public Object clone()
Creates a new object of the same class as this object.
Overrides:
[clone](../../../java/lang/Object.html#clone%28%29)
in class [Object](../../../java/lang/Object.html "class in java.lang")
Returns:
a clone of this instance.
Throws:
[OutOfMemoryError](../../../java/lang/OutOfMemoryError.html "class in java.lang")
- if there is not enough memory.
Since:
1.2
See Also:
Submit a bug or feature
For further API reference and developer documentation, see Java SE Developer Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
Copyright © 1993, 2015, Oracle and/or its affiliates. All rights reserved. Use is subject to license terms. Also see the documentation redistribution policy.
Scripting on this page tracks web page traffic, but does not change the content in any way.