socket — Low-level networking interface (original) (raw)

Source code: Lib/socket.py


This module provides access to the BSD socket interface. It is available on all modern Unix systems, Windows, MacOS, and probably additional platforms.

Note

Some behavior may be platform dependent, since calls are made to the operating system socket APIs.

The Python interface is a straightforward transliteration of the Unix system call and library interface for sockets to Python’s object-oriented style: thesocket() function returns a socket object whose methods implement the various socket system calls. Parameter types are somewhat higher-level than in the C interface: as with read() and write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length is implicit on send operations.

See also

Module socketserver

Classes that simplify writing network servers.

Module ssl

A TLS/SSL wrapper for socket objects.

Socket families

Depending on the system and the build options, various socket families are supported by this module.

The address format required by a particular socket object is automatically selected based on the address family specified when the socket object was created. Socket addresses are represented as follows:

If you use a hostname in the host portion of IPv4/v6 socket address, the program may show a nondeterministic behavior, as Python uses the first address returned from the DNS resolution. The socket address will be resolved differently into an actual IPv4/v6 address, depending on the results from DNS resolution and/or the host configuration. For deterministic behavior use a numeric address in host portion.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be raised. Errors related to socket or address semantics raise OSError or one of its subclasses.

Non-blocking mode is supported through setblocking(). A generalization of this based on timeouts is supported throughsettimeout().

Module contents

The module socket exports the following elements.

Exceptions

exception socket.error

A deprecated alias of OSError.

Changed in version 3.3: Following PEP 3151, this class was made an alias of OSError.

exception socket.herror

A subclass of OSError, this exception is raised for address-related errors, i.e. for functions that use h_errno in the POSIX C API, including gethostbyname_ex() and gethostbyaddr(). The accompanying value is a pair (h_errno, string) representing an error returned by a library call. h_errno is a numeric value, while_string_ represents the description of h_errno, as returned by thehstrerror() C function.

Changed in version 3.3: This class was made a subclass of OSError.

exception socket.gaierror

A subclass of OSError, this exception is raised for address-related errors by getaddrinfo() and getnameinfo(). The accompanying value is a pair (error, string) representing an error returned by a library call. string represents the description of_error_, as returned by the gai_strerror() C function. The numeric error value will match one of the EAI_* constants defined in this module.

Changed in version 3.3: This class was made a subclass of OSError.

exception socket.timeout

A deprecated alias of TimeoutError.

A subclass of OSError, this exception is raised when a timeout occurs on a socket which has had timeouts enabled via a prior call tosettimeout() (or implicitly throughsetdefaulttimeout()). The accompanying value is a string whose value is currently always “timed out”.

Changed in version 3.3: This class was made a subclass of OSError.

Changed in version 3.10: This class was made an alias of TimeoutError.

Constants

The AF_* and SOCK_* constants are now AddressFamily andSocketKind IntEnum collections.

Added in version 3.4.

socket.AF_UNIX

socket.AF_INET

socket.AF_INET6

These constants represent the address (and protocol) families, used for the first argument to socket(). If the AF_UNIX constant is not defined then this protocol is unsupported. More constants may be available depending on the system.

socket.AF_UNSPEC

AF_UNSPEC means thatgetaddrinfo() should return socket addresses for any address family (either IPv4, IPv6, or any other) that can be used.

socket.SOCK_STREAM

socket.SOCK_DGRAM

socket.SOCK_RAW

socket.SOCK_RDM

socket.SOCK_SEQPACKET

These constants represent the socket types, used for the second argument tosocket(). More constants may be available depending on the system. (Only SOCK_STREAM and SOCK_DGRAM appear to be generally useful.)

socket.SOCK_CLOEXEC

socket.SOCK_NONBLOCK

These two constants, if defined, can be combined with the socket types and allow you to set some flags atomically (thus avoiding possible race conditions and the need for separate calls).

Added in version 3.2.

SO_*

socket.SOMAXCONN

MSG_*

SOL_*

SCM_*

IPPROTO_*

IPPORT_*

INADDR_*

IP_*

IPV6_*

EAI_*

AI_*

NI_*

TCP_*

Many constants of these forms, documented in the Unix documentation on sockets and/or the IP protocol, are also defined in the socket module. They are generally used in arguments to the setsockopt() and getsockopt()methods of socket objects. In most cases, only those symbols that are defined in the Unix header files are defined; for a few symbols, default values are provided.

Changed in version 3.6: SO_DOMAIN, SO_PROTOCOL, SO_PEERSEC, SO_PASSSEC,TCP_USER_TIMEOUT, TCP_CONGESTION were added.

Changed in version 3.6.5: On Windows, TCP_FASTOPEN, TCP_KEEPCNT appear if run-time Windows supports.

Changed in version 3.7: TCP_NOTSENT_LOWAT was added.

On Windows, TCP_KEEPIDLE, TCP_KEEPINTVL appear if run-time Windows supports.

Changed in version 3.10: IP_RECVTOS was added. Added TCP_KEEPALIVE. On MacOS this constant can be used in the same way that TCP_KEEPIDLE is used on Linux.

Changed in version 3.11: Added TCP_CONNECTION_INFO. On MacOS this constant can be used in the same way that TCP_INFO is used on Linux and BSD.

Changed in version 3.12: Added SO_RTABLE and SO_USER_COOKIE. On OpenBSD and FreeBSD respectively those constants can be used in the same way thatSO_MARK is used on Linux. Also added missing TCP socket options from Linux: TCP_MD5SIG, TCP_THIN_LINEAR_TIMEOUTS, TCP_THIN_DUPACK,TCP_REPAIR, TCP_REPAIR_QUEUE, TCP_QUEUE_SEQ,TCP_REPAIR_OPTIONS, TCP_TIMESTAMP, TCP_CC_INFO,TCP_SAVE_SYN, TCP_SAVED_SYN, TCP_REPAIR_WINDOW,TCP_FASTOPEN_CONNECT, TCP_ULP, TCP_MD5SIG_EXT,TCP_FASTOPEN_KEY, TCP_FASTOPEN_NO_COOKIE,TCP_ZEROCOPY_RECEIVE, TCP_INQ, TCP_TX_DELAY. Added IP_PKTINFO, IP_UNBLOCK_SOURCE, IP_BLOCK_SOURCE,IP_ADD_SOURCE_MEMBERSHIP, IP_DROP_SOURCE_MEMBERSHIP.

Changed in version 3.13: Added SO_BINDTOIFINDEX. On Linux this constant can be used in the same way that SO_BINDTODEVICE is used, but with the index of a network interface instead of its name.

socket.AF_CAN

socket.PF_CAN

SOL_CAN_*

CAN_*

Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.

Added in version 3.3.

Changed in version 3.11: NetBSD support was added.

Changed in version 3.13.3 (unreleased): Restored missing CAN_RAW_ERR_FILTER on Linux.

socket.CAN_BCM

CAN_BCM_*

CAN_BCM, in the CAN protocol family, is the broadcast manager (BCM) protocol. Broadcast manager constants, documented in the Linux documentation, are also defined in the socket module.

Note

The CAN_BCM_CAN_FD_FRAME flag is only available on Linux >= 4.8.

Added in version 3.4.

socket.CAN_RAW_FD_FRAMES

Enables CAN FD support in a CAN_RAW socket. This is disabled by default. This allows your application to send both CAN and CAN FD frames; however, you must accept both CAN and CAN FD frames when reading from the socket.

This constant is documented in the Linux documentation.

Added in version 3.5.

socket.CAN_RAW_JOIN_FILTERS

Joins the applied CAN filters such that only CAN frames that match all given CAN filters are passed to user space.

This constant is documented in the Linux documentation.

Added in version 3.9.

socket.CAN_ISOTP

CAN_ISOTP, in the CAN protocol family, is the ISO-TP (ISO 15765-2) protocol. ISO-TP constants, documented in the Linux documentation.

Added in version 3.7.

socket.CAN_J1939

CAN_J1939, in the CAN protocol family, is the SAE J1939 protocol. J1939 constants, documented in the Linux documentation.

Added in version 3.9.

socket.AF_DIVERT

socket.PF_DIVERT

These two constants, documented in the FreeBSD divert(4) manual page, are also defined in the socket module.

Added in version 3.12.

socket.AF_PACKET

socket.PF_PACKET

PACKET_*

Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.

socket.ETH_P_ALL

ETH_P_ALL can be used in the socketconstructor as proto for the AF_PACKET family in order to capture every packet, regardless of protocol.

For more information, see the packet(7) manpage.

Added in version 3.12.

socket.AF_RDS

socket.PF_RDS

socket.SOL_RDS

RDS_*

Many constants of these forms, documented in the Linux documentation, are also defined in the socket module.

Added in version 3.3.

socket.SIO_RCVALL

socket.SIO_KEEPALIVE_VALS

socket.SIO_LOOPBACK_FAST_PATH

RCVALL_*

Constants for Windows’ WSAIoctl(). The constants are used as arguments to theioctl() method of socket objects.

Changed in version 3.6: SIO_LOOPBACK_FAST_PATH was added.

TIPC_*

TIPC related constants, matching the ones exported by the C socket API. See the TIPC documentation for more information.

socket.AF_ALG

socket.SOL_ALG

ALG_*

Constants for Linux Kernel cryptography.

Added in version 3.6.

socket.AF_VSOCK

socket.IOCTL_VM_SOCKETS_GET_LOCAL_CID

VMADDR*

SO_VM*

Constants for Linux host/guest communication.

Added in version 3.7.

socket.AF_LINK

Added in version 3.4.

socket.has_ipv6

This constant contains a boolean value which indicates if IPv6 is supported on this platform.

socket.BDADDR_ANY

socket.BDADDR_LOCAL

These are string constants containing Bluetooth addresses with special meanings. For example, BDADDR_ANY can be used to indicate any address when specifying the binding socket withBTPROTO_RFCOMM.

socket.HCI_FILTER

socket.HCI_TIME_STAMP

socket.HCI_DATA_DIR

For use with BTPROTO_HCI. HCI_FILTER is only available on Linux and FreeBSD. HCI_TIME_STAMP andHCI_DATA_DIR are only available on Linux.

socket.AF_QIPCRTR

Constant for Qualcomm’s IPC router protocol, used to communicate with service providing remote processors.

socket.SCM_CREDS2

socket.LOCAL_CREDS

socket.LOCAL_CREDS_PERSISTENT

LOCAL_CREDS and LOCAL_CREDS_PERSISTENT can be used with SOCK_DGRAM, SOCK_STREAM sockets, equivalent to Linux/DragonFlyBSD SO_PASSCRED, while LOCAL_CREDS sends the credentials at first read, LOCAL_CREDS_PERSISTENT sends for each read, SCM_CREDS2 must be then used for the latter for the message type.

Added in version 3.11.

socket.SO_INCOMING_CPU

Constant to optimize CPU locality, to be used in conjunction withSO_REUSEPORT.

Added in version 3.11.

socket.AF_HYPERV

socket.HV_PROTOCOL_RAW

socket.HVSOCKET_CONNECT_TIMEOUT

socket.HVSOCKET_CONNECT_TIMEOUT_MAX

socket.HVSOCKET_CONNECTED_SUSPEND

socket.HVSOCKET_ADDRESS_FLAG_PASSTHRU

socket.HV_GUID_ZERO

socket.HV_GUID_WILDCARD

socket.HV_GUID_BROADCAST

socket.HV_GUID_CHILDREN

socket.HV_GUID_LOOPBACK

socket.HV_GUID_PARENT

Constants for Windows Hyper-V sockets for host/guest communications.

Added in version 3.12.

socket.ETHERTYPE_ARP

socket.ETHERTYPE_IP

socket.ETHERTYPE_IPV6

socket.ETHERTYPE_VLAN

IEEE 802.3 protocol number. constants.

Added in version 3.12.

socket.SHUT_RD

socket.SHUT_WR

socket.SHUT_RDWR

These constants are used by the shutdown() method of socket objects.

Functions

Creating sockets

The following functions all create socket objects.

class socket.socket(family=AF_INET, type=SOCK_STREAM, proto=0, fileno=None)

Create a new socket using the given address family, socket type and protocol number. The address family should be AF_INET (the default),AF_INET6, AF_UNIX, AF_CAN, AF_PACKET, or AF_RDS. The socket type should be SOCK_STREAM (the default), SOCK_DGRAM, SOCK_RAW or perhaps one of the otherSOCK_ constants. The protocol number is usually zero and may be omitted or in the case where the address family is AF_CAN the protocol should be one of CAN_RAW, CAN_BCM, CAN_ISOTP orCAN_J1939.

If fileno is specified, the values for family, type, and proto are auto-detected from the specified file descriptor. Auto-detection can be overruled by calling the function with explicit family, type, or _proto_arguments. This only affects how Python represents e.g. the return value of socket.getpeername() but not the actual OS resource. Unlikesocket.fromfd(), fileno will return the same socket and not a duplicate. This may help close a detached socket usingsocket.close().

The newly created socket is non-inheritable.

Raises an auditing event socket.__new__ with arguments self, family, type, protocol.

Changed in version 3.3: The AF_CAN family was added. The AF_RDS family was added.

Changed in version 3.4: The CAN_BCM protocol was added.

Changed in version 3.4: The returned socket is now non-inheritable.

Changed in version 3.7: The CAN_ISOTP protocol was added.

Changed in version 3.7: When SOCK_NONBLOCK or SOCK_CLOEXECbit flags are applied to type they are cleared, andsocket.type will not reflect them. They are still passed to the underlying system socket() call. Therefore,

sock = socket.socket( socket.AF_INET, socket.SOCK_STREAM | socket.SOCK_NONBLOCK)

will still create a non-blocking socket on OSes that supportSOCK_NONBLOCK, but sock.type will be set tosocket.SOCK_STREAM.

Changed in version 3.9: The CAN_J1939 protocol was added.

Changed in version 3.10: The IPPROTO_MPTCP protocol was added.

socket.socketpair([_family_[, _type_[, _proto_]]])

Build a pair of connected socket objects using the given address family, socket type, and protocol number. Address family, socket type, and protocol number are as for the socket() function above. The default family is AF_UNIXif defined on the platform; otherwise, the default is AF_INET.

The newly created sockets are non-inheritable.

Changed in version 3.2: The returned socket objects now support the whole socket API, rather than a subset.

Changed in version 3.4: The returned sockets are now non-inheritable.

Changed in version 3.5: Windows support added.

socket.create_connection(address, timeout=GLOBAL_DEFAULT, source_address=None, *, all_errors=False)

Connect to a TCP service listening on the internet address (a 2-tuple(host, port)), and return the socket object. This is a higher-level function than socket.connect(): if host is a non-numeric hostname, it will try to resolve it for both AF_INET and AF_INET6, and then try to connect to all possible addresses in turn until a connection succeeds. This makes it easy to write clients that are compatible to both IPv4 and IPv6.

Passing the optional timeout parameter will set the timeout on the socket instance before attempting to connect. If no timeout is supplied, the global default timeout setting returned bygetdefaulttimeout() is used.

If supplied, source_address must be a 2-tuple (host, port) for the socket to bind to as its source address before connecting. If host or port are ‘’ or 0 respectively the OS default behavior will be used.

When a connection cannot be created, an exception is raised. By default, it is the exception from the last address in the list. If _all_errors_is True, it is an ExceptionGroup containing the errors of all attempts.

Changed in version 3.2: source_address was added.

Changed in version 3.11: all_errors was added.

socket.create_server(address, *, family=AF_INET, backlog=None, reuse_port=False, dualstack_ipv6=False)

Convenience function which creates a TCP socket bound to address (a 2-tuple(host, port)) and returns the socket object.

family should be either AF_INET or AF_INET6.backlog is the queue size passed to socket.listen(); if not specified , a default reasonable value is chosen.reuse_port dictates whether to set the SO_REUSEPORT socket option.

If dualstack_ipv6 is true, family is AF_INET6 and the platform supports it the socket will be able to accept both IPv4 and IPv6 connections, else it will raise ValueError. Most POSIX platforms and Windows are supposed to support this functionality. When this functionality is enabled the address returned bysocket.getpeername() when an IPv4 connection occurs will be an IPv6 address represented as an IPv4-mapped IPv6 address. If dualstack_ipv6 is false it will explicitly disable this functionality on platforms that enable it by default (e.g. Linux). This parameter can be used in conjunction with has_dualstack_ipv6():

import socket

addr = ("", 8080) # all interfaces, port 8080 if socket.has_dualstack_ipv6(): s = socket.create_server(addr, family=socket.AF_INET6, dualstack_ipv6=True) else: s = socket.create_server(addr)

Note

On POSIX platforms the SO_REUSEADDR socket option is set in order to immediately reuse previous sockets which were bound on the same _address_and remained in TIME_WAIT state.

Added in version 3.8.

socket.has_dualstack_ipv6()

Return True if the platform supports creating a TCP socket which can handle both IPv4 and IPv6 connections.

Added in version 3.8.

socket.fromfd(fd, family, type, proto=0)

Duplicate the file descriptor fd (an integer as returned by a file object’sfileno() method) and build a socket object from the result. Address family, socket type and protocol number are as for the socket() function above. The file descriptor should refer to a socket, but this is not checked — subsequent operations on the object may fail if the file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket passed to a program as standard input or output (such as a server started by the Unix inet daemon). The socket is assumed to be in blocking mode.

The newly created socket is non-inheritable.

Changed in version 3.4: The returned socket is now non-inheritable.

socket.fromshare(data)

Instantiate a socket from data obtained from the socket.share()method. The socket is assumed to be in blocking mode.

Added in version 3.3.

socket.SocketType

This is a Python type object that represents the socket object type. It is the same as type(socket(...)).

Other functions

The socket module also offers various network-related services:

socket.close(fd)

Close a socket file descriptor. This is like os.close(), but for sockets. On some platforms (most noticeable Windows) os.close()does not work for socket file descriptors.

Added in version 3.7.

socket.getaddrinfo(host, port, family=AF_UNSPEC, type=0, proto=0, flags=0)

This function wraps the C function getaddrinfo of the underlying system.

Translate the host/port argument into a sequence of 5-tuples that contain all the necessary arguments for creating a socket connected to that service.host is a domain name, a string representation of an IPv4/v6 address or None. port is a string service name such as 'http', a numeric port number or None. By passing None as the value of _host_and port, you can pass NULL to the underlying C API.

The family, type and proto arguments can be optionally specified in order to provide options and limit the list of addresses returned. Pass their default values (AF_UNSPEC, 0, and 0, respectively) to not limit the results. See the note below for details.

The flags argument can be one or several of the AI_* constants, and will influence how results are computed and returned. For example, AI_NUMERICHOST will disable domain name resolution and will raise an error if host is a domain name.

The function returns a list of 5-tuples with the following structure:

(family, type, proto, canonname, sockaddr)

In these tuples, family, type, proto are all integers and are meant to be passed to the socket() function. canonname will be a string representing the canonical name of the host ifAI_CANONNAME is part of the flags argument; else _canonname_will be empty. sockaddr is a tuple describing a socket address, whose format depends on the returned family (a (address, port) 2-tuple forAF_INET, a (address, port, flowinfo, scope_id) 4-tuple forAF_INET6), and is meant to be passed to the socket.connect()method.

Note

If you intend to use results from getaddrinfo() to create a socket (rather than, for example, retrieve canonname), consider limiting the results by type (e.g. SOCK_STREAM orSOCK_DGRAM) and/or proto (e.g. IPPROTO_TCP orIPPROTO_UDP) that your application can handle.

The behavior with default values of family, type, _proto_and flags is system-specific.

Many systems (for example, most Linux configurations) will return a sorted list of all matching addresses. These addresses should generally be tried in order until a connection succeeds (possibly tried in parallel, for example, using a Happy Eyeballs algorithm). In these cases, limiting the type and/or proto can help eliminate unsuccessful or unusable connection attempts.

Some systems will, however, only return a single address. (For example, this was reported on Solaris and AIX configurations.) On these systems, limiting the type and/or proto helps ensure that this address is usable.

Raises an auditing event socket.getaddrinfo with arguments host, port, family, type, protocol.

The following example fetches address information for a hypothetical TCP connection to example.org on port 80 (results may differ on your system if IPv6 isn’t enabled):

socket.getaddrinfo("example.org", 80, proto=socket.IPPROTO_TCP) [(socket.AF_INET6, socket.SOCK_STREAM, 6, '', ('2606:2800:220:1:248:1893:25c8:1946', 80, 0, 0)), (socket.AF_INET, socket.SOCK_STREAM, 6, '', ('93.184.216.34', 80))]

Changed in version 3.2: parameters can now be passed using keyword arguments.

Changed in version 3.7: for IPv6 multicast addresses, string representing an address will not contain %scope_id part.

socket.getfqdn([_name_])

Return a fully qualified domain name for name. If name is omitted or empty, it is interpreted as the local host. To find the fully qualified name, the hostname returned by gethostbyaddr() is checked, followed by aliases for the host, if available. The first name which includes a period is selected. In case no fully qualified domain name is available and name was provided, it is returned unchanged. If name was empty or equal to '0.0.0.0', the hostname from gethostname() is returned.

socket.gethostbyname(hostname)

Translate a host name to IPv4 address format. The IPv4 address is returned as a string, such as '100.50.200.5'. If the host name is an IPv4 address itself it is returned unchanged. See gethostbyname_ex() for a more complete interface. gethostbyname() does not support IPv6 name resolution, andgetaddrinfo() should be used instead for IPv4/v6 dual stack support.

Raises an auditing event socket.gethostbyname with argument hostname.

socket.gethostbyname_ex(hostname)

Translate a host name to IPv4 address format, extended interface. Return a 3-tuple (hostname, aliaslist, ipaddrlist) where hostname is the host’s primary host name, aliaslist is a (possibly empty) list of alternative host names for the same address, and ipaddrlist is a list of IPv4 addresses for the same interface on the same host (often but not always a single address). gethostbyname_ex() does not support IPv6 name resolution, and getaddrinfo() should be used instead for IPv4/v6 dual stack support.

Raises an auditing event socket.gethostbyname with argument hostname.

socket.gethostname()

Return a string containing the hostname of the machine where the Python interpreter is currently executing.

Raises an auditing event socket.gethostname with no arguments.

Note: gethostname() doesn’t always return the fully qualified domain name; use getfqdn() for that.

socket.gethostbyaddr(ip_address)

Return a 3-tuple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name responding to the given ip_address, aliaslist is a (possibly empty) list of alternative host names for the same address, and_ipaddrlist_ is a list of IPv4/v6 addresses for the same interface on the same host (most likely containing only a single address). To find the fully qualified domain name, use the function getfqdn(). gethostbyaddr() supports both IPv4 and IPv6.

Raises an auditing event socket.gethostbyaddr with argument ip_address.

socket.getnameinfo(sockaddr, flags)

Translate a socket address sockaddr into a 2-tuple (host, port). Depending on the settings of flags, the result can contain a fully qualified domain name or numeric address representation in host. Similarly, port can contain a string port name or a numeric port number.

For IPv6 addresses, %scope_id is appended to the host part if _sockaddr_contains meaningful scope_id. Usually this happens for multicast addresses.

For more information about flags you can consult getnameinfo(3).

Raises an auditing event socket.getnameinfo with argument sockaddr.

socket.getprotobyname(protocolname)

Translate an internet protocol name (for example, 'icmp') to a constant suitable for passing as the (optional) third argument to the socket()function. This is usually only needed for sockets opened in “raw” mode (SOCK_RAW); for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.

socket.getservbyname(_servicename_[, _protocolname_])

Translate an internet service name and protocol name to a port number for that service. The optional protocol name, if given, should be 'tcp' or'udp', otherwise any protocol will match.

Raises an auditing event socket.getservbyname with arguments servicename, protocolname.

socket.getservbyport(_port_[, _protocolname_])

Translate an internet port number and protocol name to a service name for that service. The optional protocol name, if given, should be 'tcp' or'udp', otherwise any protocol will match.

Raises an auditing event socket.getservbyport with arguments port, protocolname.

socket.ntohl(x)

Convert 32-bit positive integers from network to host byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.ntohs(x)

Convert 16-bit positive integers from network to host byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

Changed in version 3.10: Raises OverflowError if x does not fit in a 16-bit unsigned integer.

socket.htonl(x)

Convert 32-bit positive integers from host to network byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

socket.htons(x)

Convert 16-bit positive integers from host to network byte order. On machines where the host byte order is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

Changed in version 3.10: Raises OverflowError if x does not fit in a 16-bit unsigned integer.

socket.inet_aton(ip_string)

Convert an IPv4 address from dotted-quad string format (for example, ‘123.45.67.89’) to 32-bit packed binary format, as a bytes object four characters in length. This is useful when conversing with a program that uses the standard C library and needs objects of type in_addr, which is the C type for the 32-bit packed binary this function returns.

inet_aton() also accepts strings with less than three dots; see the Unix manual page inet(3) for details.

If the IPv4 address string passed to this function is invalid,OSError will be raised. Note that exactly what is valid depends on the underlying C implementation of inet_aton().

inet_aton() does not support IPv6, and inet_pton() should be used instead for IPv4/v6 dual stack support.

socket.inet_ntoa(packed_ip)

Convert a 32-bit packed IPv4 address (a bytes-like object four bytes in length) to its standard dotted-quad string representation (for example, ‘123.45.67.89’). This is useful when conversing with a program that uses the standard C library and needs objects of type in_addr, which is the C type for the 32-bit packed binary data this function takes as an argument.

If the byte sequence passed to this function is not exactly 4 bytes in length, OSError will be raised. inet_ntoa() does not support IPv6, and inet_ntop() should be used instead for IPv4/v6 dual stack support.

socket.inet_pton(address_family, ip_string)

Convert an IP address from its family-specific string format to a packed, binary format. inet_pton() is useful when a library or network protocol calls for an object of type in_addr (similar toinet_aton()) or in6_addr.

Supported values for address_family are currently AF_INET andAF_INET6. If the IP address string ip_string is invalid,OSError will be raised. Note that exactly what is valid depends on both the value of address_family and the underlying implementation ofinet_pton().

Changed in version 3.4: Windows support added

socket.inet_ntop(address_family, packed_ip)

Convert a packed IP address (a bytes-like object of some number of bytes) to its standard, family-specific string representation (for example, '7.10.0.5' or '5aef:2b::8').inet_ntop() is useful when a library or network protocol returns an object of type in_addr (similar to inet_ntoa()) orin6_addr.

Supported values for address_family are currently AF_INET andAF_INET6. If the bytes object packed_ip is not the correct length for the specified address family, ValueError will be raised.OSError is raised for errors from the call to inet_ntop().

Changed in version 3.4: Windows support added

socket.CMSG_LEN(length)

Return the total length, without trailing padding, of an ancillary data item with associated data of the given length. This value can often be used as the buffer size for recvmsg() to receive a single item of ancillary data, but RFC 3542 requires portable applications to use CMSG_SPACE() and thus include space for padding, even when the item will be the last in the buffer. Raises OverflowError if length is outside the permissible range of values.

Added in version 3.3.

socket.CMSG_SPACE(length)

Return the buffer size needed for recvmsg() to receive an ancillary data item with associated data of the given_length_, along with any trailing padding. The buffer space needed to receive multiple items is the sum of the CMSG_SPACE()values for their associated data lengths. RaisesOverflowError if length is outside the permissible range of values.

Note that some systems might support ancillary data without providing this function. Also note that setting the buffer size using the results of this function may not precisely limit the amount of ancillary data that can be received, since additional data may be able to fit into the padding area.

Added in version 3.3.

socket.getdefaulttimeout()

Return the default timeout in seconds (float) for new socket objects. A value of None indicates that new socket objects have no timeout. When the socket module is first imported, the default is None.

socket.setdefaulttimeout(timeout)

Set the default timeout in seconds (float) for new socket objects. When the socket module is first imported, the default is None. Seesettimeout() for possible values and their respective meanings.

socket.sethostname(name)

Set the machine’s hostname to name. This will raise anOSError if you don’t have enough rights.

Raises an auditing event socket.sethostname with argument name.

Added in version 3.3.

socket.if_nameindex()

Return a list of network interface information (index int, name string) tuples.OSError if the system call fails.

Added in version 3.3.

Changed in version 3.8: Windows support was added.

Note

On Windows network interfaces have different names in different contexts (all names are examples):

This function returns names of the second form from the list, ethernet_32770in this example case.

socket.if_nametoindex(if_name)

Return a network interface index number corresponding to an interface name.OSError if no interface with the given name exists.

Added in version 3.3.

Changed in version 3.8: Windows support was added.

See also

“Interface name” is a name as documented in if_nameindex().

socket.if_indextoname(if_index)

Return a network interface name corresponding to an interface index number.OSError if no interface with the given index exists.

Added in version 3.3.

Changed in version 3.8: Windows support was added.

See also

“Interface name” is a name as documented in if_nameindex().

socket.send_fds(sock, buffers, _fds_[, _flags_[, _address_]])

Send the list of file descriptors fds over an AF_UNIX socket sock. The fds parameter is a sequence of file descriptors. Consult sendmsg() for the documentation of these parameters.

Availability: Unix, Windows, not WASI.

Unix platforms supporting sendmsg()and SCM_RIGHTS mechanism.

Added in version 3.9.

socket.recv_fds(sock, bufsize, _maxfds_[, _flags_])

Receive up to maxfds file descriptors from an AF_UNIX socket sock. Return (msg, list(fds), flags, addr). Consult recvmsg() for the documentation of these parameters.

Availability: Unix, Windows, not WASI.

Unix platforms supporting sendmsg()and SCM_RIGHTS mechanism.

Added in version 3.9.

Note

Any truncated integers at the end of the list of file descriptors.

Socket Objects

Socket objects have the following methods. Except formakefile(), these correspond to Unix system calls applicable to sockets.

Changed in version 3.2: Support for the context manager protocol was added. Exiting the context manager is equivalent to calling close().

socket.accept()

Accept a connection. The socket must be bound to an address and listening for connections. The return value is a pair (conn, address) where conn is a_new_ socket object usable to send and receive data on the connection, and_address_ is the address bound to the socket on the other end of the connection.

The newly created socket is non-inheritable.

Changed in version 3.4: The socket is now non-inheritable.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

socket.bind(address)

Bind the socket to address. The socket must not already be bound. (The format of address depends on the address family — see above.)

Raises an auditing event socket.bind with arguments self, address.

socket.close()

Mark the socket closed. The underlying system resource (e.g. a file descriptor) is also closed when all file objects from makefile()are closed. Once that happens, all future operations on the socket object will fail. The remote end will receive no more data (after queued data is flushed).

Sockets are automatically closed when they are garbage-collected, but it is recommended to close() them explicitly, or to use awith statement around them.

Changed in version 3.6: OSError is now raised if an error occurs when the underlyingclose() call is made.

Note

close() releases the resource associated with a connection but does not necessarily close the connection immediately. If you want to close the connection in a timely fashion, call shutdown()before close().

socket.connect(address)

Connect to a remote socket at address. (The format of address depends on the address family — see above.)

If the connection is interrupted by a signal, the method waits until the connection completes, or raise a TimeoutError on timeout, if the signal handler doesn’t raise an exception and the socket is blocking or has a timeout. For non-blocking sockets, the method raises anInterruptedError exception if the connection is interrupted by a signal (or the exception raised by the signal handler).

Raises an auditing event socket.connect with arguments self, address.

Changed in version 3.5: The method now waits until the connection completes instead of raising anInterruptedError exception if the connection is interrupted by a signal, the signal handler doesn’t raise an exception and the socket is blocking or has a timeout (see the PEP 475 for the rationale).

socket.connect_ex(address)

Like connect(address), but return an error indicator instead of raising an exception for errors returned by the C-level connect() call (other problems, such as “host not found,” can still raise exceptions). The error indicator is 0 if the operation succeeded, otherwise the value of theerrno variable. This is useful to support, for example, asynchronous connects.

Raises an auditing event socket.connect with arguments self, address.

socket.detach()

Put the socket object into closed state without actually closing the underlying file descriptor. The file descriptor is returned, and can be reused for other purposes.

Added in version 3.2.

socket.dup()

Duplicate the socket.

The newly created socket is non-inheritable.

Changed in version 3.4: The socket is now non-inheritable.

socket.fileno()

Return the socket’s file descriptor (a small integer), or -1 on failure. This is useful with select.select().

Under Windows the small integer returned by this method cannot be used where a file descriptor can be used (such as os.fdopen()). Unix does not have this limitation.

socket.get_inheritable()

Get the inheritable flag of the socket’s file descriptor or socket’s handle: True if the socket can be inherited in child processes, False if it cannot.

Added in version 3.4.

socket.getpeername()

Return the remote address to which the socket is connected. This is useful to find out the port number of a remote IPv4/v6 socket, for instance. (The format of the address returned depends on the address family — see above.) On some systems this function is not supported.

socket.getsockname()

Return the socket’s own address. This is useful to find out the port number of an IPv4/v6 socket, for instance. (The format of the address returned depends on the address family — see above.)

socket.getsockopt(level, _optname_[, _buflen_])

Return the value of the given socket option (see the Unix man page_getsockopt(2)_). The needed symbolic constants (SO_* etc.) are defined in this module. If buflen is absent, an integer option is assumed and its integer value is returned by the function. If buflen is present, it specifies the maximum length of the buffer used to receive the option in, and this buffer is returned as a bytes object. It is up to the caller to decode the contents of the buffer (see the optional built-in module struct for a way to decode C structures encoded as byte strings).

socket.getblocking()

Return True if socket is in blocking mode, False if in non-blocking.

This is equivalent to checking socket.gettimeout() != 0.

Added in version 3.7.

socket.gettimeout()

Return the timeout in seconds (float) associated with socket operations, or None if no timeout is set. This reflects the last call tosetblocking() or settimeout().

socket.ioctl(control, option)

Platform:

Windows

The ioctl() method is a limited interface to the WSAIoctl system interface. Please refer to the Win32 documentation for more information.

On other platforms, the generic fcntl.fcntl() and fcntl.ioctl()functions may be used; they accept a socket object as their first argument.

Currently only the following control codes are supported:SIO_RCVALL, SIO_KEEPALIVE_VALS, and SIO_LOOPBACK_FAST_PATH.

Changed in version 3.6: SIO_LOOPBACK_FAST_PATH was added.

socket.listen([_backlog_])

Enable a server to accept connections. If backlog is specified, it must be at least 0 (if it is lower, it is set to 0); it specifies the number of unaccepted connections that the system will allow before refusing new connections. If not specified, a default reasonable value is chosen.

Changed in version 3.5: The backlog parameter is now optional.

socket.makefile(mode='r', buffering=None, *, encoding=None, errors=None, newline=None)

Return a file object associated with the socket. The exact returned type depends on the arguments given to makefile(). These arguments are interpreted the same way as by the built-in open() function, except the only supported mode values are 'r' (default), 'w', 'b', or a combination of those.

The socket must be in blocking mode; it can have a timeout, but the file object’s internal buffer may end up in an inconsistent state if a timeout occurs.

Closing the file object returned by makefile() won’t close the original socket unless all other file objects have been closed andsocket.close() has been called on the socket object.

Note

On Windows, the file-like object created by makefile() cannot be used where a file object with a file descriptor is expected, such as the stream arguments of subprocess.Popen().

socket.recv(_bufsize_[, _flags_])

Receive data from the socket. The return value is a bytes object representing the data received. The maximum amount of data to be received at once is specified by bufsize. A returned empty bytes object indicates that the client has disconnected. See the Unix manual page recv(2) for the meaning of the optional argument_flags_; it defaults to zero.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

socket.recvfrom(_bufsize_[, _flags_])

Receive data from the socket. The return value is a pair (bytes, address)where bytes is a bytes object representing the data received and address is the address of the socket sending the data. See the Unix manual page_recv(2)_ for the meaning of the optional argument flags; it defaults to zero. (The format of address depends on the address family — see above.)

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

Changed in version 3.7: For multicast IPv6 address, first item of address does not contain%scope_id part anymore. In order to get full IPv6 address usegetnameinfo().

socket.recvmsg(_bufsize_[, _ancbufsize_[, _flags_]])

Receive normal data (up to bufsize bytes) and ancillary data from the socket. The ancbufsize argument sets the size in bytes of the internal buffer used to receive the ancillary data; it defaults to 0, meaning that no ancillary data will be received. Appropriate buffer sizes for ancillary data can be calculated usingCMSG_SPACE() or CMSG_LEN(), and items which do not fit into the buffer might be truncated or discarded. The _flags_argument defaults to 0 and has the same meaning as forrecv().

The return value is a 4-tuple: (data, ancdata, msg_flags, address). The data item is a bytes object holding the non-ancillary data received. The ancdata item is a list of zero or more tuples (cmsg_level, cmsg_type, cmsg_data) representing the ancillary data (control messages) received: cmsg_level and_cmsg_type_ are integers specifying the protocol level and protocol-specific type respectively, and cmsg_data is abytes object holding the associated data. The _msg_flags_item is the bitwise OR of various flags indicating conditions on the received message; see your system documentation for details. If the receiving socket is unconnected, address is the address of the sending socket, if available; otherwise, its value is unspecified.

On some systems, sendmsg() and recvmsg() can be used to pass file descriptors between processes over an AF_UNIXsocket. When this facility is used (it is often restricted toSOCK_STREAM sockets), recvmsg() will return, in its ancillary data, items of the form (socket.SOL_SOCKET, socket.SCM_RIGHTS, fds), where fds is a bytes object representing the new file descriptors as a binary array of the native C int type. If recvmsg() raises an exception after the system call returns, it will first attempt to close any file descriptors received via this mechanism.

Some systems do not indicate the truncated length of ancillary data items which have been only partially received. If an item appears to extend beyond the end of the buffer, recvmsg() will issue a RuntimeWarning, and will return the part of it which is inside the buffer provided it has not been truncated before the start of its associated data.

On systems which support the SCM_RIGHTS mechanism, the following function will receive up to maxfds file descriptors, returning the message data and a list containing the descriptors (while ignoring unexpected conditions such as unrelated control messages being received). See also sendmsg().

import socket, array

def recv_fds(sock, msglen, maxfds): fds = array.array("i") # Array of ints msg, ancdata, flags, addr = sock.recvmsg(msglen, socket.CMSG_LEN(maxfds * fds.itemsize)) for cmsg_level, cmsg_type, cmsg_data in ancdata: if cmsg_level == socket.SOL_SOCKET and cmsg_type == socket.SCM_RIGHTS: # Append data, ignoring any truncated integers at the end. fds.frombytes(cmsg_data[:len(cmsg_data) - (len(cmsg_data) % fds.itemsize)]) return msg, list(fds)

Added in version 3.3.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

socket.recvmsg_into(_buffers_[, _ancbufsize_[, _flags_]])

Receive normal data and ancillary data from the socket, behaving asrecvmsg() would, but scatter the non-ancillary data into a series of buffers instead of returning a new bytes object. The_buffers_ argument must be an iterable of objects that export writable buffers (e.g. bytearray objects); these will be filled with successive chunks of the non-ancillary data until it has all been written or there are no more buffers. The operating system may set a limit (sysconf() value SC_IOV_MAX) on the number of buffers that can be used. The ancbufsize and_flags_ arguments have the same meaning as for recvmsg().

The return value is a 4-tuple: (nbytes, ancdata, msg_flags, address), where nbytes is the total number of bytes of non-ancillary data written into the buffers, and ancdata,msg_flags and address are the same as for recvmsg().

Example:

import socket s1, s2 = socket.socketpair() b1 = bytearray(b'----') b2 = bytearray(b'0123456789') b3 = bytearray(b'--------------') s1.send(b'Mary had a little lamb') 22 s2.recvmsg_into([b1, memoryview(b2)[2:9], b3]) (22, [], 0, None) [b1, b2, b3] [bytearray(b'Mary'), bytearray(b'01 had a 9'), bytearray(b'little lamb---')]

Added in version 3.3.

socket.recvfrom_into(_buffer_[, _nbytes_[, _flags_]])

Receive data from the socket, writing it into buffer instead of creating a new bytestring. The return value is a pair (nbytes, address) where nbytes is the number of bytes received and address is the address of the socket sending the data. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults to zero. (The format of _address_depends on the address family — see above.)

socket.recv_into(_buffer_[, _nbytes_[, _flags_]])

Receive up to nbytes bytes from the socket, storing the data into a buffer rather than creating a new bytestring. If nbytes is not specified (or 0), receive up to the size available in the given buffer. Returns the number of bytes received. See the Unix manual page recv(2) for the meaning of the optional argument flags; it defaults to zero.

socket.send(_bytes_[, _flags_])

Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the same meaning as for recv() above. Returns the number of bytes sent. Applications are responsible for checking that all data has been sent; if only some of the data was transmitted, the application needs to attempt delivery of the remaining data. For further information on this topic, consult the Socket Programming HOWTO.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

socket.sendall(_bytes_[, _flags_])

Send data to the socket. The socket must be connected to a remote socket. The optional flags argument has the same meaning as for recv() above. Unlike send(), this method continues to send data from bytes until either all data has been sent or an error occurs. None is returned on success. On error, an exception is raised, and there is no way to determine how much data, if any, was successfully sent.

Changed in version 3.5: The socket timeout is no longer reset each time data is sent successfully. The socket timeout is now the maximum total duration to send all data.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

socket.sendto(bytes, address)

socket.sendto(bytes, flags, address)

Send data to the socket. The socket should not be connected to a remote socket, since the destination socket is specified by address. The optional _flags_argument has the same meaning as for recv() above. Return the number of bytes sent. (The format of address depends on the address family — see above.)

Raises an auditing event socket.sendto with arguments self, address.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

socket.sendmsg(_buffers_[, _ancdata_[, _flags_[, _address_]]])

Send normal and ancillary data to the socket, gathering the non-ancillary data from a series of buffers and concatenating it into a single message. The buffers argument specifies the non-ancillary data as an iterable ofbytes-like objects(e.g. bytes objects); the operating system may set a limit (sysconf() value SC_IOV_MAX) on the number of buffers that can be used. The ancdata argument specifies the ancillary data (control messages) as an iterable of zero or more tuples(cmsg_level, cmsg_type, cmsg_data), where cmsg_level and_cmsg_type_ are integers specifying the protocol level and protocol-specific type respectively, and cmsg_data is a bytes-like object holding the associated data. Note that some systems (in particular, systems without CMSG_SPACE()) might support sending only one control message per call. The_flags_ argument defaults to 0 and has the same meaning as forsend(). If address is supplied and not None, it sets a destination address for the message. The return value is the number of bytes of non-ancillary data sent.

The following function sends the list of file descriptors _fds_over an AF_UNIX socket, on systems which support theSCM_RIGHTS mechanism. See also recvmsg().

import socket, array

def send_fds(sock, msg, fds): return sock.sendmsg([msg], [(socket.SOL_SOCKET, socket.SCM_RIGHTS, array.array("i", fds))])

Raises an auditing event socket.sendmsg with arguments self, address.

Added in version 3.3.

Changed in version 3.5: If the system call is interrupted and the signal handler does not raise an exception, the method now retries the system call instead of raising an InterruptedError exception (see PEP 475 for the rationale).

socket.sendmsg_afalg([msg, ]*, _op_[, _iv_[, _assoclen_[, _flags_]]])

Specialized version of sendmsg() for AF_ALG socket. Set mode, IV, AEAD associated data length and flags for AF_ALG socket.

Added in version 3.6.

socket.sendfile(file, offset=0, count=None)

Send a file until EOF is reached by using high-performanceos.sendfile and return the total number of bytes which were sent.file must be a regular file object opened in binary mode. Ifos.sendfile is not available (e.g. Windows) or file is not a regular file send() will be used instead. offset tells from where to start reading the file. If specified, count is the total number of bytes to transmit as opposed to sending the file until EOF is reached. File position is updated on return or also in case of error in which casefile.tell() can be used to figure out the number of bytes which were sent. The socket must be of SOCK_STREAM type. Non-blocking sockets are not supported.

Added in version 3.5.

socket.set_inheritable(inheritable)

Set the inheritable flag of the socket’s file descriptor or socket’s handle.

Added in version 3.4.

socket.setblocking(flag)

Set blocking or non-blocking mode of the socket: if flag is false, the socket is set to non-blocking, else to blocking mode.

This method is a shorthand for certain settimeout() calls:

Changed in version 3.7: The method no longer applies SOCK_NONBLOCK flag onsocket.type.

socket.settimeout(value)

Set a timeout on blocking socket operations. The value argument can be a nonnegative floating-point number expressing seconds, or None. If a non-zero value is given, subsequent socket operations will raise atimeout exception if the timeout period value has elapsed before the operation has completed. If zero is given, the socket is put in non-blocking mode. If None is given, the socket is put in blocking mode.

For further information, please consult the notes on socket timeouts.

Changed in version 3.7: The method no longer toggles SOCK_NONBLOCK flag onsocket.type.

socket.setsockopt(level, optname, value: int)

socket.setsockopt(level, optname, value: buffer)

socket.setsockopt(level, optname, None, optlen: int)

Set the value of the given socket option (see the Unix manual page_setsockopt(2)_). The needed symbolic constants are defined in this module (SO_* etc. ). The value can be an integer,None or a bytes-like object representing a buffer. In the later case it is up to the caller to ensure that the bytestring contains the proper bits (see the optional built-in module struct for a way to encode C structures as bytestrings). When value is set to None,optlen argument is required. It’s equivalent to call setsockopt() C function with optval=NULL and optlen=optlen.

Changed in version 3.6: setsockopt(level, optname, None, optlen: int) form added.

socket.shutdown(how)

Shut down one or both halves of the connection. If how is SHUT_RD, further receives are disallowed. If how is SHUT_WR, further sends are disallowed. If how is SHUT_RDWR, further sends and receives are disallowed.

Duplicate a socket and prepare it for sharing with a target process. The target process must be provided with process_id. The resulting bytes object can then be passed to the target process using some form of interprocess communication and the socket can be recreated there using fromshare(). Once this method has been called, it is safe to close the socket since the operating system has already duplicated it for the target process.

Added in version 3.3.

Note that there are no methods read() or write(); userecv() and send() without flags argument instead.

Socket objects also have these (read-only) attributes that correspond to the values given to the socket constructor.

socket.family

The socket family.

socket.type

The socket type.

socket.proto

The socket protocol.

Notes on socket timeouts

A socket object can be in one of three modes: blocking, non-blocking, or timeout. Sockets are by default always created in blocking mode, but this can be changed by calling setdefaulttimeout().

Note

At the operating system level, sockets in timeout mode are internally set in non-blocking mode. Also, the blocking and timeout modes are shared between file descriptors and socket objects that refer to the same network endpoint. This implementation detail can have visible consequences if e.g. you decide to use the fileno() of a socket.

Timeouts and the connect method

The connect() operation is also subject to the timeout setting, and in general it is recommended to call settimeout()before calling connect() or pass a timeout parameter tocreate_connection(). However, the system network stack may also return a connection timeout error of its own regardless of any Python socket timeout setting.

Timeouts and the accept method

If getdefaulttimeout() is not None, sockets returned by the accept() method inherit that timeout. Otherwise, the behaviour depends on settings of the listening socket:

Example

Here are four minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back (servicing only one client), and a client using it. Note that a server must perform the sequence socket(),bind(), listen(), accept() (possibly repeating the accept() to service more than one client), while a client only needs the sequence socket(), connect(). Also note that the server does not sendall()/recv() on the socket it is listening on but on the new socket returned byaccept().

The first two examples support IPv4 only.

Echo server program

import socket

HOST = '' # Symbolic name meaning all available interfaces PORT = 50007 # Arbitrary non-privileged port with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind((HOST, PORT)) s.listen(1) conn, addr = s.accept() with conn: print('Connected by', addr) while True: data = conn.recv(1024) if not data: break conn.sendall(data)

Echo client program

import socket

HOST = 'daring.cwi.nl' # The remote host PORT = 50007 # The same port as used by the server with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.connect((HOST, PORT)) s.sendall(b'Hello, world') data = s.recv(1024) print('Received', repr(data))

The next two examples are identical to the above two, but support both IPv4 and IPv6. The server side will listen to the first address family available (it should listen to both instead). On most of IPv6-ready systems, IPv6 will take precedence and the server may not accept IPv4 traffic. The client side will try to connect to all the addresses returned as a result of the name resolution, and sends traffic to the first one connected successfully.

Echo server program

import socket import sys

HOST = None # Symbolic name meaning all available interfaces PORT = 50007 # Arbitrary non-privileged port s = None for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM, 0, socket.AI_PASSIVE): af, socktype, proto, canonname, sa = res try: s = socket.socket(af, socktype, proto) except OSError as msg: s = None continue try: s.bind(sa) s.listen(1) except OSError as msg: s.close() s = None continue break if s is None: print('could not open socket') sys.exit(1) conn, addr = s.accept() with conn: print('Connected by', addr) while True: data = conn.recv(1024) if not data: break conn.send(data)

Echo client program

import socket import sys

HOST = 'daring.cwi.nl' # The remote host PORT = 50007 # The same port as used by the server s = None for res in socket.getaddrinfo(HOST, PORT, socket.AF_UNSPEC, socket.SOCK_STREAM): af, socktype, proto, canonname, sa = res try: s = socket.socket(af, socktype, proto) except OSError as msg: s = None continue try: s.connect(sa) except OSError as msg: s.close() s = None continue break if s is None: print('could not open socket') sys.exit(1) with s: s.sendall(b'Hello, world') data = s.recv(1024) print('Received', repr(data))

The next example shows how to write a very simple network sniffer with raw sockets on Windows. The example requires administrator privileges to modify the interface:

import socket

the public network interface

HOST = socket.gethostbyname(socket.gethostname())

create a raw socket and bind it to the public interface

s = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_IP) s.bind((HOST, 0))

Include IP headers

s.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

receive all packets

s.ioctl(socket.SIO_RCVALL, socket.RCVALL_ON)

receive a packet

print(s.recvfrom(65565))

disabled promiscuous mode

s.ioctl(socket.SIO_RCVALL, socket.RCVALL_OFF)

The next example shows how to use the socket interface to communicate to a CAN network using the raw socket protocol. To use CAN with the broadcast manager protocol instead, open a socket with:

socket.socket(socket.AF_CAN, socket.SOCK_DGRAM, socket.CAN_BCM)

After binding (CAN_RAW) or connecting (CAN_BCM) the socket, you can use the socket.send() and socket.recv() operations (and their counterparts) on the socket object as usual.

This last example might require special privileges:

import socket import struct

CAN frame packing/unpacking (see 'struct can_frame' in <linux/can.h>)

can_frame_fmt = "=IB3x8s" can_frame_size = struct.calcsize(can_frame_fmt)

def build_can_frame(can_id, data): can_dlc = len(data) data = data.ljust(8, b'\x00') return struct.pack(can_frame_fmt, can_id, can_dlc, data)

def dissect_can_frame(frame): can_id, can_dlc, data = struct.unpack(can_frame_fmt, frame) return (can_id, can_dlc, data[:can_dlc])

create a raw socket and bind it to the 'vcan0' interface

s = socket.socket(socket.AF_CAN, socket.SOCK_RAW, socket.CAN_RAW) s.bind(('vcan0',))

while True: cf, addr = s.recvfrom(can_frame_size)

print('Received: can_id=%x, can_dlc=%x, data=%s' % dissect_can_frame(cf))

try:
    s.send(cf)
except OSError:
    print('Error sending CAN frame')

try:
    s.send(build_can_frame(0x01, b'\x01\x02\x03'))
except OSError:
    print('Error sending CAN frame')

Running an example several times with too small delay between executions, could lead to this error:

OSError: [Errno 98] Address already in use

This is because the previous execution has left the socket in a TIME_WAITstate, and can’t be immediately reused.

There is a socket flag to set, in order to prevent this,socket.SO_REUSEADDR:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((HOST, PORT))

the SO_REUSEADDR flag tells the kernel to reuse a local socket inTIME_WAIT state, without waiting for its natural timeout to expire.

See also

For an introduction to socket programming (in C), see the following papers:

both in the UNIX Programmer’s Manual, Supplementary Documents 1 (sections PS1:7 and PS1:8). The platform-specific reference material for the various socket-related system calls are also a valuable source of information on the details of socket semantics. For Unix, refer to the manual pages; for Windows, see the WinSock (or Winsock 2) specification. For IPv6-ready APIs, readers may want to refer to RFC 3493 titled Basic Socket Interface Extensions for IPv6.