class Float - Documentation for Ruby 2.3.0 (original) (raw)
BigDecimal extends the native Float class to provide the to_d method.
When you require BigDecimal in your application, this method will be available on Float objects.
Float objects represent inexact real numbers using the native architecture's double-precision floating point representation.
Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. see following:
- docs.sun.com/source/806-3568/ncg_goldberg.html
- wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise
- en.wikipedia.org/wiki/Floating_point#Accuracy_problems
Constants
DIG
The minimum number of significant decimal digits in a double-precision floating point.
Usually defaults to 15.
EPSILON
The difference between 1 and the smallest double-precision floating point number greater than 1.
Usually defaults to 2.2204460492503131e-16.
INFINITY
An expression representing positive infinity.
MANT_DIG
The number of base digits for the double
data type.
Usually defaults to 53.
MAX
The largest possible integer in a double-precision floating point number.
Usually defaults to 1.7976931348623157e+308.
MAX_10_EXP
The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to 308.
MAX_EXP
The largest possible exponent value in a double-precision floating point.
Usually defaults to 1024.
MIN
The smallest positive normalized number in a double-precision floating point.
Usually defaults to 2.2250738585072014e-308.
If the platform supports denormalized numbers, there are numbers between zero and Float::MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.
MIN_10_EXP
The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to -307.
MIN_EXP
The smallest posable exponent value in a double-precision floating point.
Usually defaults to -1021.
NAN
An expression representing a value which is “not a number”.
RADIX
The base of the floating point, or number of unique digits used to represent the number.
Usually defaults to 2 on most systems, which would represent a base-10 decimal.
ROUNDS
Represents the rounding mode for floating point addition.
Usually defaults to 1, rounding to the nearest number.
Other modes include:
-1
Indeterminable
0
Rounding towards zero
1
Rounding to the nearest number
2
Rounding towards positive infinity
3
Rounding towards negative infinity
Public Instance Methods
float % other → float click to toggle source
Return the modulo after division of float
by other
.
6543.21.modulo(137)
6543.21.modulo(137.24)
static VALUE flo_mod(VALUE x, VALUE y) { double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
float * other → float click to toggle source
Returns a new float which is the product of float
and other
.
static VALUE flo_mul(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '*'); } }
float ** other → float click to toggle source
Raises float
to the power of other
.
2.0**3
static VALUE flo_pow(VALUE x, VALUE y) { double dx, dy; if (RB_TYPE_P(y, T_FIXNUM)) { dx = RFLOAT_VALUE(x); dy = (double)FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { dx = RFLOAT_VALUE(x); dy = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { dx = RFLOAT_VALUE(x); dy = RFLOAT_VALUE(y); if (dx < 0 && dy != round(dy)) return rb_funcall(rb_complex_raw1(x), idPow, 1, y); } else { return rb_num_coerce_bin(x, y, idPow); } return DBL2NUM(pow(dx, dy)); }
float + other → float click to toggle source
Returns a new float which is the sum of float
and other
.
static VALUE flo_plus(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '+'); } }
float - other → float click to toggle source
Returns a new float which is the difference of float
and other
.
static VALUE flo_minus(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '-'); } }
-float → float click to toggle source
Returns float, negated.
static VALUE flo_uminus(VALUE flt) { return DBL2NUM(-RFLOAT_VALUE(flt)); }
float / other → float click to toggle source
Returns a new float which is the result of dividing float
by other
.
static VALUE flo_div(VALUE x, VALUE y) { long f_y; double d;
if (RB_TYPE_P(y, T_FIXNUM)) {
f_y = FIX2LONG(y);
return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
d = rb_big2dbl(y);
return DBL2NUM(RFLOAT_VALUE(x) / d);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '/');
}
}
float < real → true or false click to toggle source
Returns true
if float
is less than real
.
The result of NaN < NaN
is undefined, so the implementation-dependent value is returned.
static VALUE flo_lt(VALUE x, VALUE y) { double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, '<'); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a < b)?Qtrue:Qfalse; }
float <= real → true or false click to toggle source
Returns true
if float
is less than or equal to real
.
The result of NaN <= NaN
is undefined, so the implementation-dependent value is returned.
static VALUE flo_le(VALUE x, VALUE y) { double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, idLE); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a <= b)?Qtrue:Qfalse; }
float <=> real → -1, 0, +1 or nil click to toggle source
Returns -1, 0, +1 or nil depending on whether float
is less than, equal to, or greater than real
. This is the basis for the tests in Comparable.
The result of NaN <=> NaN
is undefined, so the implementation-dependent value is returned.
nil
is returned if the two values are incomparable.
static VALUE flo_cmp(VALUE x, VALUE y) { double a, b; VALUE i;
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return INT2FIX(-FIX2INT(rel));
return rel;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
}
else {
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
if (RTEST(i)) {
int j = rb_cmpint(i, x, y);
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
return INT2FIX(j);
}
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, id_cmp);
}
return rb_dbl_cmp(a, b);
}
float == obj → true or false click to toggle source
Returns true
only if obj
has the same value as float
. Contrast this with Float#eql?, which requires obj to be a Float.
The result of NaN == NaN
is undefined, so the implementation-dependent value is returned.
1.0 == 1
static VALUE flo_eq(VALUE x, VALUE y) { volatile double a, b;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
return rb_integer_float_eq(y, x);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return num_equal(x, y); } a = RFLOAT_VALUE(x); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; }
float == obj → true or false click to toggle source
Returns true
only if obj
has the same value as float
. Contrast this with Float#eql?, which requires obj to be a Float.
The result of NaN == NaN
is undefined, so the implementation-dependent value is returned.
1.0 == 1
static VALUE flo_eq(VALUE x, VALUE y) { volatile double a, b;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
return rb_integer_float_eq(y, x);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return num_equal(x, y); } a = RFLOAT_VALUE(x); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; }
float > real → true or false click to toggle source
Returns true
if float
is greater than real
.
The result of NaN > NaN
is undefined, so the implementation-dependent value is returned.
static VALUE flo_gt(VALUE x, VALUE y) { double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, '>'); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a > b)?Qtrue:Qfalse; }
float >= real → true or false click to toggle source
Returns true
if float
is greater than or equal to real
.
The result of NaN >= NaN
is undefined, so the implementation-dependent value is returned.
static VALUE flo_ge(VALUE x, VALUE y) { double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, idGE); } #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a)) return Qfalse; #endif return (a >= b)?Qtrue:Qfalse; }
abs → float click to toggle source
Returns the absolute value of float
.
(-34.56).abs
-34.56.abs
static VALUE flo_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); }
angle → 0 or float click to toggle source
Returns 0 if the value is positive, pi otherwise.
static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); }
arg → 0 or float click to toggle source
Returns 0 if the value is positive, pi otherwise.
static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); }
ceil → integer click to toggle source
Returns the smallest Integer greater than or equal to float
.
1.2.ceil
2.0.ceil
(-1.2).ceil
(-2.0).ceil
static VALUE flo_ceil(VALUE num) { double f = ceil(RFLOAT_VALUE(num)); long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
coerce(numeric) → array click to toggle source
Returns an array with both a numeric
and a float
represented as Float objects.
This is achieved by converting a numeric
to a Float.
1.2.coerce(3)
2.5.coerce(1.1)
static VALUE flo_coerce(VALUE x, VALUE y) { return rb_assoc_new(rb_Float(y), x); }
dclone() click to toggle source
denominator → integer click to toggle source
Returns the denominator (always positive). The result is machine dependent.
See numerator.
static VALUE float_denominator(VALUE self) { double d = RFLOAT_VALUE(self); if (isinf(d) || isnan(d)) return INT2FIX(1); return rb_call_super(0, 0); }
divmod(numeric) → array click to toggle source
See Numeric#divmod.
42.0.divmod 6 42.0.divmod 5
static VALUE flo_divmod(VALUE x, VALUE y) { double fy, div, mod; volatile VALUE a, b;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, id_divmod);
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
eql?(obj) → true or false click to toggle source
Returns true
only if obj
is a Float with the same value as float
. Contrast this with Float#==, which performs type conversions.
The result of NaN.eql?(NaN)
is undefined, so the implementation-dependent value is returned.
1.0.eql?(1)
static VALUE flo_eql(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FLOAT)) { double a = RFLOAT_VALUE(x); double b = RFLOAT_VALUE(y); #if defined(_MSC_VER) && _MSC_VER < 1300 if (isnan(a) || isnan(b)) return Qfalse; #endif if (a == b) return Qtrue; } return Qfalse; }
fdiv(numeric) → float click to toggle source
Returns float / numeric
, same as Float#/.
static VALUE flo_quo(VALUE x, VALUE y) { return rb_funcall(x, '/', 1, y); }
finite? → true or false click to toggle source
Returns true
if float
is a valid IEEE floating point number (it is not infinite, and Float#nan? is false
).
static VALUE flo_is_finite_p(VALUE num) { double value = RFLOAT_VALUE(num);
#ifdef HAVE_ISFINITE if (!isfinite(value)) return Qfalse; #else if (isinf(value) || isnan(value)) return Qfalse; #endif
return Qtrue;
}
floor → integer click to toggle source
Returns the largest integer less than or equal to float
.
1.2.floor
2.0.floor
(-1.2).floor
(-2.0).floor
static VALUE flo_floor(VALUE num) { double f = floor(RFLOAT_VALUE(num)); long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
hash → integer click to toggle source
Returns a hash code for this float.
See also Object#hash.
static VALUE flo_hash(VALUE num) { return rb_dbl_hash(RFLOAT_VALUE(num)); }
infinite? → nil, -1, +1 click to toggle source
Return values corresponding to the value of float
:
finite
nil
-Infinity
-1
+Infinity
1
For example:
(0.0).infinite?
(-1.0/0.0).infinite?
(+1.0/0.0).infinite?
static VALUE flo_is_infinite_p(VALUE num) { double value = RFLOAT_VALUE(num);
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
magnitude → float click to toggle source
Returns the absolute value of float
.
(-34.56).abs
-34.56.abs
static VALUE flo_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); }
modulo(other) → float click to toggle source
Return the modulo after division of float
by other
.
6543.21.modulo(137)
6543.21.modulo(137.24)
static VALUE flo_mod(VALUE x, VALUE y) { double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
nan? → true or false click to toggle source
Returns true
if float
is an invalid IEEE floating point number.
a = -1.0
a.nan?
a = 0.0/0.0
a.nan?
static VALUE flo_is_nan_p(VALUE num) { double value = RFLOAT_VALUE(num);
return isnan(value) ? Qtrue : Qfalse;
}
negative? → true or false click to toggle source
Returns true
if float
is less than 0.
static VALUE flo_negative_p(VALUE num) { double f = RFLOAT_VALUE(num); return f < 0.0 ? Qtrue : Qfalse; }
next_float → float click to toggle source
Returns the next representable floating-point number.
Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
Float::NAN.next_float is Float::NAN.
For example:
p 0.01.next_float
p 1.0.next_float
p 100.0.next_float
p 0.01.next_float - 0.01
p 1.0.next_float - 1.0
p 100.0.next_float - 100.0
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
f = 0.0
100.times { f += 0.1 }
p f
p 10-f
p(10.0.next_float-10)
p((10-f)/(10.0.next_float-10))
p((10-f)/(10*Float::EPSILON))
p "%a" % f
static VALUE flo_next_float(VALUE vx) { double x, y; x = NUM2DBL(vx); y = nextafter(x, INFINITY); return DBL2NUM(y); }
numerator → integer click to toggle source
Returns the numerator. The result is machine dependent.
n = 0.3.numerator
d = 0.3.denominator
n.fdiv(d)
static VALUE float_numerator(VALUE self) { double d = RFLOAT_VALUE(self); if (isinf(d) || isnan(d)) return self; return rb_call_super(0, 0); }
phase → 0 or float click to toggle source
Returns 0 if the value is positive, pi otherwise.
static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); }
positive? → true or false click to toggle source
Returns true
if float
is greater than 0.
static VALUE flo_positive_p(VALUE num) { double f = RFLOAT_VALUE(num); return f > 0.0 ? Qtrue : Qfalse; }
prev_float → float click to toggle source
Returns the previous representable floating-point number.
(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
Float::NAN.prev_float is Float::NAN.
For example:
p 0.01.prev_float
p 1.0.prev_float
p 100.0.prev_float
p 0.01 - 0.01.prev_float
p 1.0 - 1.0.prev_float
p 100.0 - 100.0.prev_float
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
static VALUE flo_prev_float(VALUE vx) { double x, y; x = NUM2DBL(vx); y = nextafter(x, -INFINITY); return DBL2NUM(y); }
quo(numeric) → float click to toggle source
Returns float / numeric
, same as Float#/.
static VALUE flo_quo(VALUE x, VALUE y) { return rb_funcall(x, '/', 1, y); }
rationalize([eps]) → rational click to toggle source
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if the optional eps is not given, it will be chosen automatically.
0.3.rationalize
1.333.rationalize
1.333.rationalize(0.01)
See to_r.
static VALUE float_rationalize(int argc, VALUE *argv, VALUE self) { VALUE e;
if (f_negative_p(self))
return f_negate(float_rationalize(argc, argv, f_abs(self)));
rb_scan_args(argc, argv, "01", &e);
if (argc != 0) {
return rb_flt_rationalize_with_prec(self, e);
}
else {
return rb_flt_rationalize(self);
}
}
round([ndigits]) → integer or float click to toggle source
Rounds float
to a given precision in decimal digits (default 0 digits).
Precision may be negative. Returns a floating point number when ndigits
is more than zero.
1.4.round
1.5.round
1.6.round
(-1.5).round
1.234567.round(2)
1.234567.round(3)
1.234567.round(4)
1.234567.round(5)
34567.89.round(-5)
34567.89.round(-4)
34567.89.round(-3)
34567.89.round(-2)
34567.89.round(-1)
34567.89.round(0)
34567.89.round(1)
34567.89.round(2)
34567.89.round(3)
static VALUE flo_round(int argc, VALUE *argv, VALUE num) { VALUE nd; double number, f, x; int ndigits = 0; int binexp; enum {float_dig = DBL_DIG+2};
if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
ndigits = NUM2INT(nd);
}
if (ndigits < 0) {
return int_round_0(flo_truncate(num), ndigits);
}
number = RFLOAT_VALUE(num);
if (ndigits == 0) {
return dbl2ival(number);
}
frexp(number, &binexp);
/* Let exp
be such that number
is written as:"0.#{digits}e#{exp}",
i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp
Recall that up to float_dig digits can be needed to represent a double,
so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
will be an integer and thus the result is the original number.
If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
if ndigits + exp < 0, the result is 0.
We have:
2 ** (binexp-1) <= |number| < 2 ** binexp
10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
If binexp >= 0, and since log_2(10) = 3.322259:
10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
floor(binexp/4) <= exp <= ceil(binexp/3)
If binexp <= 0, swap the /4 and the /3
So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
*/
if (isinf(number) || isnan(number) ||
(ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
return num;
}
if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
return DBL2NUM(0);
}
f = pow(10, ndigits);
x = round(number * f);
if (x > 0) {
if ((double)((x + 0.5) / f) <= number) x += 1;
}
else {
if ((double)((x - 0.5) / f) >= number) x -= 1;
}
return DBL2NUM(x / f);}
/*
- call-seq:
float.to_i -> integer
float.to_int -> integer
float.truncate -> integer
- Returns the +float+ truncated to an Integer.
- Synonyms are #to_i, #to_int, and #truncate. */
static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
to_d → bigdecimal click to toggle source
Convert flt
to a BigDecimal and return it.
require 'bigdecimal' require 'bigdecimal/util'
0.5.to_d
def to_d(precision=nil) BigDecimal(self, precision || Float::DIG) end
to_f → self click to toggle source
Since float
is already a float, returns self
.
static VALUE flo_to_f(VALUE num) { return num; }
to_i → integer click to toggle source
to_int → integer
Returns the float
truncated to an Integer.
Synonyms are to_i, to_int, and truncate.
static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
to_int → integer click to toggle source
Returns the float
truncated to an Integer.
Synonyms are to_i, to_int, and truncate.
static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
to_r → rational click to toggle source
Returns the value as a rational.
NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is equivalent to '3/10'.to_r, but the former isn't so.
2.0.to_r
2.5.to_r
-0.75.to_r
0.0.to_r
See rationalize.
static VALUE float_to_r(VALUE self) { VALUE f, n;
float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2 { long ln = FIX2LONG(n);
if (ln == 0)
return f_to_r(f);
if (ln > 0)
return f_to_r(f_lshift(f, n));
ln = -ln;
return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
}
#else return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n))); #endif }
to_s → string click to toggle source
Returns a string containing a representation of self. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
static VALUE flo_to_s(VALUE flt) { enum {decimal_mant = DBL_MANT_DIG-DBL_DIG}; enum {float_dig = DBL_DIG+1}; char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10]; double value = RFLOAT_VALUE(flt); VALUE s; char *p, *e; int sign, decpt, digs;
if (isinf(value))
return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
else if (isnan(value))
return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt <= DBL_DIG) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
exp:
if (digs > 1) {
memmove(buf + 2, buf + 1, digs - 1);
}
else {
buf[2] = '0';
digs++;
}
buf[1] = '.';
rb_str_cat(s, buf, digs + 1);
rb_str_catf(s, "e%+03d", decpt - 1);
}
return s;
}
truncate → integer click to toggle source
Returns the float
truncated to an Integer.
Synonyms are to_i, to_int, and truncate.
static VALUE flo_truncate(VALUE num) { double f = RFLOAT_VALUE(num); long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
zero? → true or false click to toggle source
Returns true
if float
is 0.0.
static VALUE flo_zero_p(VALUE num) { if (RFLOAT_VALUE(num) == 0.0) { return Qtrue; } return Qfalse; }