class Float - RDoc Documentation (original) (raw)
Float objects represent inexact real numbers using the native architecture's double-precision floating point representation.
Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:
- docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
- github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
- en.wikipedia.org/wiki/Floating_point#Accuracy_problems
Constants
DIG
The minimum number of significant decimal digits in a double-precision floating point.
Usually defaults to 15.
EPSILON
The difference between 1 and the smallest double-precision floating point number greater than 1.
Usually defaults to 2.2204460492503131e-16.
INFINITY
An expression representing positive infinity.
MANT_DIG
The number of base digits for the double
data type.
Usually defaults to 53.
MAX
The largest possible integer in a double-precision floating point number.
Usually defaults to 1.7976931348623157e+308.
MAX_10_EXP
The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to 308.
MAX_EXP
The largest possible exponent value in a double-precision floating point.
Usually defaults to 1024.
MIN
The smallest positive normalized number in a double-precision floating point.
Usually defaults to 2.2250738585072014e-308.
If the platform supports denormalized numbers, there are numbers between zero and Float::MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.
MIN_10_EXP
The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to -307.
MIN_EXP
The smallest possible exponent value in a double-precision floating point.
Usually defaults to -1021.
NAN
An expression representing a value which is “not a number”.
RADIX
The base of the floating point, or number of unique digits used to represent the number.
Usually defaults to 2 on most systems, which would represent a base-10 decimal.
Public Instance Methods
float % other → float click to toggle source
Returns the modulo after division of float
by other
.
6543.21.modulo(137)
6543.21.modulo(137.24)
static VALUE flo_mod(VALUE x, VALUE y) { double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
float * other → float click to toggle source
Returns a new Float which is the product of float
and other
.
VALUE rb_float_mul(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '*'); } }
float ** other → float click to toggle source
Raises float
to the power of other
.
2.0**3
VALUE rb_float_pow(VALUE x, VALUE y) { double dx, dy; if (y == INT2FIX(2)) { dx = RFLOAT_VALUE(x); return DBL2NUM(dx * dx); } else if (RB_TYPE_P(y, T_FIXNUM)) { dx = RFLOAT_VALUE(x); dy = (double)FIX2LONG(y); } else if (RB_TYPE_P(y, T_BIGNUM)) { dx = RFLOAT_VALUE(x); dy = rb_big2dbl(y); } else if (RB_TYPE_P(y, T_FLOAT)) { dx = RFLOAT_VALUE(x); dy = RFLOAT_VALUE(y); if (dx < 0 && dy != round(dy)) return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy); } else { return rb_num_coerce_bin(x, y, idPow); } return DBL2NUM(pow(dx, dy)); }
float + other → float click to toggle source
Returns a new Float which is the sum of float
and other
.
VALUE rb_float_plus(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '+'); } }
float - other → float click to toggle source
Returns a new Float which is the difference of float
and other
.
VALUE rb_float_minus(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FIXNUM)) { return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y)); } else if (RB_TYPE_P(y, T_BIGNUM)) { return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y)); } else if (RB_TYPE_P(y, T_FLOAT)) { return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y)); } else { return rb_num_coerce_bin(x, y, '-'); } }
-float → float click to toggle source
Returns float
, negated.
VALUE rb_float_uminus(VALUE flt) { return DBL2NUM(-RFLOAT_VALUE(flt)); }
float / other → float click to toggle source
Returns a new Float which is the result of dividing float
by other
.
VALUE rb_float_div(VALUE x, VALUE y) { double num = RFLOAT_VALUE(x); double den; double ret;
if (RB_TYPE_P(y, T_FIXNUM)) {
den = FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
den = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
den = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '/');
}
ret = double_div_double(num, den);
return DBL2NUM(ret);
}
float < real → true or false click to toggle source
Returns true
if float
is less than real
.
The result of NaN < NaN
is undefined, so an implementation-dependent value is returned.
static VALUE flo_lt(VALUE x, VALUE y) { double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) < 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, '<'); } #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a < b)?Qtrue:Qfalse; }
float <= real → true or false click to toggle source
Returns true
if float
is less than or equal to real
.
The result of NaN <= NaN
is undefined, so an implementation-dependent value is returned.
static VALUE flo_le(VALUE x, VALUE y) { double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) <= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, idLE); } #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a <= b)?Qtrue:Qfalse; }
float <=> real → -1, 0, +1, or nil click to toggle source
Returns -1, 0, or +1 depending on whether float
is less than, equal to, or greater than real
. This is the basis for the tests in the Comparable module.
The result of NaN <=> NaN
is undefined, so an implementation-dependent value is returned.
nil
is returned if the two values are incomparable.
static VALUE flo_cmp(VALUE x, VALUE y) { double a, b; VALUE i;
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return LONG2FIX(-FIX2LONG(rel));
return rel;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
}
else {
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
if (RTEST(i)) {
int j = rb_cmpint(i, x, y);
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
return INT2FIX(j);
}
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, id_cmp);
}
return rb_dbl_cmp(a, b);
}
float == obj → true or false click to toggle source
Returns true
only if obj
has the same value as float
. Contrast this with Float#eql?, which requires obj
to be a Float.
1.0 == 1
The result of NaN == NaN
is undefined, so an implementation-dependent value is returned.
MJIT_FUNC_EXPORTED VALUE rb_float_equal(VALUE x, VALUE y) { volatile double a, b;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
return rb_integer_float_eq(y, x);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return num_equal(x, y); } a = RFLOAT_VALUE(x); #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a == b)?Qtrue:Qfalse; }
Also aliased as: ===
Returns true
only if obj
has the same value as float
. Contrast this with Float#eql?, which requires obj
to be a Float.
1.0 == 1
The result of NaN == NaN
is undefined, so an implementation-dependent value is returned.
Alias for: ==
float > real → true or false click to toggle source
Returns true
if float
is greater than real
.
The result of NaN > NaN
is undefined, so an implementation-dependent value is returned.
VALUE rb_float_gt(VALUE x, VALUE y) { double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) > 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, '>'); } #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a > b)?Qtrue:Qfalse; }
float >= real → true or false click to toggle source
Returns true
if float
is greater than or equal to real
.
The result of NaN >= NaN
is undefined, so an implementation-dependent value is returned.
static VALUE flo_ge(VALUE x, VALUE y) { double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) >= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if MSC_VERSION_BEFORE(1300) if (isnan(b)) return Qfalse; #endif } else { return rb_num_coerce_relop(x, y, idGE); } #if MSC_VERSION_BEFORE(1300) if (isnan(a)) return Qfalse; #endif return (a >= b)?Qtrue:Qfalse; }
abs → float click to toggle source
Returns the absolute value of float
.
(-34.56).abs
-34.56.abs
34.56.abs
Float#magnitude is an alias for Float#abs.
VALUE rb_float_abs(VALUE flt) { double val = fabs(RFLOAT_VALUE(flt)); return DBL2NUM(val); }
angle → 0 or float
Returns 0 if the value is positive, pi otherwise.
Alias for: arg
arg → 0 or float click to toggle source
Returns 0 if the value is positive, pi otherwise.
static VALUE float_arg(VALUE self) { if (isnan(RFLOAT_VALUE(self))) return self; if (f_tpositive_p(self)) return INT2FIX(0); return rb_const_get(rb_mMath, id_PI); }
ceil([ndigits]) → integer or float click to toggle source
Returns the smallest number greater than or equal to float
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.2.ceil
2.0.ceil
(-1.2).ceil
(-2.0).ceil
1.234567.ceil(2)
1.234567.ceil(3)
1.234567.ceil(4)
1.234567.ceil(5)
34567.89.ceil(-5)
34567.89.ceil(-4)
34567.89.ceil(-3)
34567.89.ceil(-2)
34567.89.ceil(-1)
34567.89.ceil(0)
34567.89.ceil(1)
34567.89.ceil(2)
34567.89.ceil(3)
Note that the limited precision of floating point arithmetic might lead to surprising results:
(2.1 / 0.7).ceil
static VALUE flo_ceil(int argc, VALUE *argv, VALUE num) { int ndigits = 0;
if (rb_check_arity(argc, 0, 1)) {
ndigits = NUM2INT(argv[0]);
}
return rb_float_ceil(num, ndigits);
}
coerce(numeric) → array click to toggle source
Returns an array with both numeric
and float
represented as Float objects.
This is achieved by converting numeric
to a Float.
1.2.coerce(3)
2.5.coerce(1.1)
static VALUE flo_coerce(VALUE x, VALUE y) { return rb_assoc_new(rb_Float(y), x); }
denominator → integer click to toggle source
Returns the denominator (always positive). The result is machine dependent.
See also Float#numerator.
VALUE rb_float_denominator(VALUE self) { double d = RFLOAT_VALUE(self); VALUE r; if (isinf(d) || isnan(d)) return INT2FIX(1); r = float_to_r(self); return nurat_denominator(r); }
divmod(numeric) → array click to toggle source
See Numeric#divmod.
42.0.divmod(6)
42.0.divmod(5)
static VALUE flo_divmod(VALUE x, VALUE y) { double fy, div, mod; volatile VALUE a, b;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, id_divmod);
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
eql?(obj) → true or false click to toggle source
Returns true
only if obj
is a Float with the same value as float
. Contrast this with Float#==, which performs type conversions.
1.0.eql?(1)
The result of NaN.eql?(NaN)
is undefined, so an implementation-dependent value is returned.
MJIT_FUNC_EXPORTED VALUE rb_float_eql(VALUE x, VALUE y) { if (RB_TYPE_P(y, T_FLOAT)) { double a = RFLOAT_VALUE(x); double b = RFLOAT_VALUE(y); #if MSC_VERSION_BEFORE(1300) if (isnan(a) || isnan(b)) return Qfalse; #endif if (a == b) return Qtrue; } return Qfalse; }
fdiv(numeric) → float
Returns float / numeric
, same as Float#/.
Alias for: quo
finite? → true or false click to toggle source
Returns true
if float
is a valid IEEE floating point number, i.e. it is not infinite and Float#nan? is false
.
VALUE rb_flo_is_finite_p(VALUE num) { double value = RFLOAT_VALUE(num);
#ifdef HAVE_ISFINITE if (!isfinite(value)) return Qfalse; #else if (isinf(value) || isnan(value)) return Qfalse; #endif
return Qtrue;
}
floor([ndigits]) → integer or float click to toggle source
Returns the largest number less than or equal to float
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.2.floor
2.0.floor
(-1.2).floor
(-2.0).floor
1.234567.floor(2)
1.234567.floor(3)
1.234567.floor(4)
1.234567.floor(5)
34567.89.floor(-5)
34567.89.floor(-4)
34567.89.floor(-3)
34567.89.floor(-2)
34567.89.floor(-1)
34567.89.floor(0)
34567.89.floor(1)
34567.89.floor(2)
34567.89.floor(3)
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).floor
static VALUE flo_floor(int argc, VALUE *argv, VALUE num) { int ndigits = 0; if (rb_check_arity(argc, 0, 1)) { ndigits = NUM2INT(argv[0]); } return rb_float_floor(num, ndigits); }
hash → integer click to toggle source
Returns a hash code for this float.
See also Object#hash.
static VALUE flo_hash(VALUE num) { return rb_dbl_hash(RFLOAT_VALUE(num)); }
infinite? → -1, 1, or nil click to toggle source
Returns nil
, -1, or 1 depending on whether the value is finite, -Infinity
, or +Infinity
.
(0.0).infinite?
(-1.0/0.0).infinite?
(+1.0/0.0).infinite?
VALUE rb_flo_is_infinite_p(VALUE num) { double value = RFLOAT_VALUE(num);
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
Returns a string containing a representation of self
. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
magnitude → float
Alias for: abs
modulo(other) → float
Returns the modulo after division of float
by other
.
6543.21.modulo(137)
6543.21.modulo(137.24)
Alias for: %
nan? → true or false click to toggle source
Returns true
if float
is an invalid IEEE floating point number.
a = -1.0
a.nan?
a = 0.0/0.0
a.nan?
static VALUE flo_is_nan_p(VALUE num) { double value = RFLOAT_VALUE(num);
return isnan(value) ? Qtrue : Qfalse;
}
negative? → true or false click to toggle source
Returns true
if float
is less than 0.
static VALUE flo_negative_p(VALUE num) { double f = RFLOAT_VALUE(num); return f < 0.0 ? Qtrue : Qfalse; }
next_float → float click to toggle source
Returns the next representable floating point number.
Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
Float::NAN.next_float is Float::NAN.
For example:
0.01.next_float
1.0.next_float
100.0.next_float
0.01.next_float - 0.01
1.0.next_float - 1.0
100.0.next_float - 100.0
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
f = 0.0
100.times { f += 0.1 }
f
10-f
10.0.next_float-10
(10-f)/(10.0.next_float-10)
(10-f)/(10*Float::EPSILON)
"%a" % 10
"%a" % f
static VALUE flo_next_float(VALUE vx) { return flo_nextafter(vx, HUGE_VAL); }
numerator → integer click to toggle source
Returns the numerator. The result is machine dependent.
n = 0.3.numerator
d = 0.3.denominator
n.fdiv(d)
See also Float#denominator.
VALUE rb_float_numerator(VALUE self) { double d = RFLOAT_VALUE(self); VALUE r; if (isinf(d) || isnan(d)) return self; r = float_to_r(self); return nurat_numerator(r); }
phase → 0 or float
Returns 0 if the value is positive, pi otherwise.
Alias for: arg
positive? → true or false click to toggle source
Returns true
if float
is greater than 0.
static VALUE flo_positive_p(VALUE num) { double f = RFLOAT_VALUE(num); return f > 0.0 ? Qtrue : Qfalse; }
prev_float → float click to toggle source
Returns the previous representable floating point number.
(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
Float::NAN.prev_float is Float::NAN.
For example:
0.01.prev_float
1.0.prev_float
100.0.prev_float
0.01 - 0.01.prev_float
1.0 - 1.0.prev_float
100.0 - 100.0.prev_float
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
static VALUE flo_prev_float(VALUE vx) { return flo_nextafter(vx, -HUGE_VAL); }
quo(numeric) → float click to toggle source
Returns float / numeric
, same as Float#/.
static VALUE flo_quo(VALUE x, VALUE y) { return num_funcall1(x, '/', y); }
Also aliased as: fdiv
rationalize([eps]) → rational click to toggle source
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps
is not given, it will be chosen automatically.
0.3.rationalize
1.333.rationalize
1.333.rationalize(0.01)
See also Float#to_r.
static VALUE float_rationalize(int argc, VALUE *argv, VALUE self) { double d = RFLOAT_VALUE(self); VALUE rat; int neg = d < 0.0; if (neg) self = DBL2NUM(-d);
if (rb_check_arity(argc, 0, 1)) {
rat = rb_flt_rationalize_with_prec(self, argv[0]);
}
else {
rat = rb_flt_rationalize(self);
}
if (neg) RATIONAL_SET_NUM(rat, rb_int_uminus(RRATIONAL(rat)->num));
return rat;
}
round([ndigits] [, half: mode]) → integer or float click to toggle source
Returns float
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.4.round
1.5.round
1.6.round
(-1.5).round
1.234567.round(2)
1.234567.round(3)
1.234567.round(4)
1.234567.round(5)
34567.89.round(-5)
34567.89.round(-4)
34567.89.round(-3)
34567.89.round(-2)
34567.89.round(-1)
34567.89.round(0)
34567.89.round(1)
34567.89.round(2)
34567.89.round(3)
If the optional half
keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode
:
:up
ornil
: round half away from zero (default):down
: round half toward zero:even
: round half toward the nearest even number
2.5.round(half: :up)
2.5.round(half: :down)
2.5.round(half: :even)
3.5.round(half: :up)
3.5.round(half: :down)
3.5.round(half: :even)
(-2.5).round(half: :up)
(-2.5).round(half: :down)
(-2.5).round(half: :even)
static VALUE flo_round(int argc, VALUE *argv, VALUE num) { double number, f, x; VALUE nd, opt; int ndigits = 0; enum ruby_num_rounding_mode mode;
if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
ndigits = NUM2INT(nd);
}
mode = rb_num_get_rounding_option(opt);
number = RFLOAT_VALUE(num);
if (number == 0.0) {
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits < 0) {
return rb_int_round(flo_to_i(num), ndigits, mode);
}
if (ndigits == 0) {
x = ROUND_CALL(mode, round, (number, 1.0));
return dbl2ival(x);
}
if (isfinite(number)) {
int binexp;
frexp(number, &binexp);
if (float_round_overflow(ndigits, binexp)) return num;
if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
f = pow(10, ndigits);
x = ROUND_CALL(mode, round, (number, f));
return DBL2NUM(x / f);
}
return num;
}
to_d → bigdecimal click to toggle source
to_d(precision) → bigdecimal
Returns the value of float
as a BigDecimal. The precision
parameter is used to determine the number of significant digits for the result (the default is Float::DIG).
require 'bigdecimal' require 'bigdecimal/util'
0.5.to_d
1.234.to_d(2)
See also BigDecimal::new.
def to_d(precision=Float::DIG+1) BigDecimal(self, precision) end
to_f → self click to toggle source
Since float
is already a Float, returns self
.
static VALUE flo_to_f(VALUE num) { return num; }
to_i → integer click to toggle source
Returns the float
truncated to an Integer.
1.2.to_i
(-1.2).to_i
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).to_i
static VALUE flo_to_i(VALUE num) { double f = RFLOAT_VALUE(num);
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
return dbl2ival(f);
}
Returns the float
truncated to an Integer.
1.2.to_i
(-1.2).to_i
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).to_i
to_r → rational click to toggle source
Returns the value as a rational.
2.0.to_r
2.5.to_r
-0.75.to_r
0.0.to_r
0.3.to_r
NOTE: 0.3.to_r isn't the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn't so.
0.3.to_r == 3/10r
"0.3".to_r == 3/10r
See also Float#rationalize.
static VALUE float_to_r(VALUE self) { VALUE f; int n;
float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2 if (n == 0) return rb_rational_new1(f); if (n > 0) return rb_rational_new1(rb_int_lshift(f, INT2FIX(n))); n = -n; return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n))); #else f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n)); if (RB_TYPE_P(f, T_RATIONAL)) return f; return rb_rational_new1(f); #endif }
to_s → string click to toggle source
Returns a string containing a representation of self
. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
static VALUE flo_to_s(VALUE flt) { enum {decimal_mant = DBL_MANT_DIG-DBL_DIG}; enum {float_dig = DBL_DIG+1}; char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10]; double value = RFLOAT_VALUE(flt); VALUE s; char *p, *e; int sign, decpt, digs;
if (isinf(value)) {
static const char minf[] = "-Infinity";
const int pos = (value > 0); /* skip "-" */
return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
}
else if (isnan(value))
return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt <= DBL_DIG) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
goto exp;
}
return s;
exp: if (digs > 1) { memmove(buf + 2, buf + 1, digs - 1); } else { buf[2] = '0'; digs++; } buf[1] = '.'; rb_str_cat(s, buf, digs + 1); rb_str_catf(s, "e%+03d", decpt - 1); return s; }
truncate([ndigits]) → integer or float click to toggle source
Returns float
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
2.8.truncate
(-2.8).truncate
1.234567.truncate(2)
34567.89.truncate(-2)
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).truncate
static VALUE flo_truncate(int argc, VALUE *argv, VALUE num) { if (signbit(RFLOAT_VALUE(num))) return flo_ceil(argc, argv, num); else return flo_floor(argc, argv, num); }
zero? → true or false click to toggle source
Returns true
if float
is 0.0.
static VALUE flo_zero_p(VALUE num) { return flo_iszero(num) ? Qtrue : Qfalse; }