class Range - Documentation for Ruby 3.5 (original) (raw)

A Range object represents a collection of values that are between given begin and end values.

You can create an Range object explicitly with:

Beginless Ranges

A beginless range has a definite end value, but a nil begin value. Such a range includes all values up to the end value.

r = (..4)
r.begin
r.include?(-50)
r.include?(4)

r = (...4)
r.include?(4)

Range.new(nil, 4)
Range.new(nil, 4, true)

A beginless range may be used to slice an array:

a = [1, 2, 3, 4]

r = (..2)
a[r]

r = (...2) a[r]

Method each for a beginless range raises an exception.

Endless Ranges

An endless range has a definite begin value, but a nil end value. Such a range includes all values from the begin value.

r = (1..)
r.end
r.include?(50)

Range.new(1, nil)

The literal for an endless range may be written with either two dots or three. The range has the same elements, either way. But note that the two are not equal:

r0 = (1..)
r1 = (1...)
r0.begin == r1.begin r0.end == r1.end
r0 == r1

An endless range may be used to slice an array:

a = [1, 2, 3, 4] r = (2..) a[r]

Method each for an endless range calls the given block indefinitely:

a = [] r = (1..) r.each do |i| a.push(i) if i.even? break if i > 10 end a

A range can be both beginless and endless. For literal beginless, endless ranges, at least the beginning or end of the range must be given as an explicit nil value. It is recommended to use an explicit nil beginning and end, since that is what Ruby uses for Range#inspect:

(nil..)
(..nil)
(nil..nil)

Ranges and Other Classes

An object may be put into a range if its class implements instance method <=>. Ruby core classes that do so include Array, Complex, File::Stat, Float, Integer, Kernel, Module, Numeric, Rational, String, Symbol, and Time.

Example:

t0 = Time.now
t1 = Time.now
t2 = Time.now
(t0..t2).include?(t1) (t0..t1).include?(t2)

A range can be iterated over only if its elements implement instance method succ. Ruby core classes that do so include Integer, String, and Symbol (but not the other classes mentioned above).

Iterator methods include:

Example:

a = [] (1..4).each {|i| a.push(i) } a

Ranges and User-Defined Classes

A user-defined class that is to be used in a range must implement instance method <=>; see Integer#<=>. To make iteration available, it must also implement instance method succ; see Integer#succ.

The class below implements both <=> and succ, and so can be used both to construct ranges and to iterate over them. Note that the Comparable module is included so the == method is defined in terms of <=>.

class Xs include Comparable attr_accessor :length def initialize(n) @length = n end def succ Xs.new(@length + 1) end def <=>(other) @length <=> other.length end def to_s sprintf "%2d #{inspect}", @length end def inspect 'X' * @length end end

r = Xs.new(3)..Xs.new(6) r.to_a
r.include?(Xs.new(5))
r.include?(Xs.new(7))

What’s Here

First, what’s elsewhere. Class Range:

Here, class Range provides methods that are useful for:

Methods for Creating a Range

Methods for Querying

Methods for Comparing

Methods for Iterating

Methods for Converting

Methods for Working with JSON

To make these methods available:

require 'json/add/range'

Public Class Methods

Source

def self.json_create(object) new(*object['a']) end

See as_json.

Source

static VALUE range_initialize(int argc, VALUE *argv, VALUE range) { VALUE beg, end, flags;

rb_scan_args(argc, argv, "21", &beg, &end, &flags);
range_modify(range);
range_init(range, beg, end, RBOOL(RTEST(flags)));
return Qnil;

}

Returns a new range based on the given objects begin and end. Optional argument exclude_end determines whether object end is included as the last object in the range:

Range.new(2, 5).to_a
Range.new(2, 5, true).to_a
Range.new('a', 'd').to_a
Range.new('a', 'd', true).to_a

Public Instance Methods

Source

static VALUE range_percent_step(VALUE range, VALUE step) { return range_step(1, &step, range); }

Same as step (but doesn’t provide default value for n). The method is convenient for experssive producing of Enumerator::ArithmeticSequence.

array = [0, 1, 2, 3, 4, 5, 6]

seq = (0..) % 2 array[seq]

array[(0..) % 2]

Note that due to operator precedence in Ruby, parentheses are mandatory around range in this case:

(0..7) % 2 0..7 % 2

Source

static VALUE range_eq(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse;

return rb_exec_recursive_paired(recursive_equal, range, obj, obj);

}

Returns true if and only if:

Otherwise returns false.

r = (1..5) r == (1..5)
r = Range.new(1, 5) r == 'foo'
r == (2..5)
r == (1..4)
r == (1...5)
r == Range.new(1, 5, true)

Note that even with the same argument, the return values of == and eql? can differ:

(1..2) == (1..2.0)
(1..2).eql? (1..2.0)

Related: Range#eql?.

Source

static VALUE range_eqq(VALUE range, VALUE val) { return r_cover_p(range, RANGE_BEG(range), RANGE_END(range), val); }

Returns true if object is between self.begin and self.end. false otherwise:

(1..4) === 2
(1..4) === 5
(1..4) === 'a'
(1..4) === 4
(1...4) === 4
('a'..'d') === 'c' ('a'..'d') === 'e'

A case statement uses method ===, and so:

case 79 when (1..50) "low" when (51..75) "medium" when (76..100) "high" end

case "2.6.5" when ..."2.4" "EOL" when "2.4"..."2.5" "maintenance" when "2.5"..."3.0" "stable" when "3.1".. "upcoming" end

Source

def as_json(*) { JSON.create_id => self.class.name, 'a' => [ first, last, exclude_end? ] } end

Methods Range#as_json and Range.json_create may be used to serialize and deserialize a Range object; see Marshal.

Method Range#as_json serializes self, returning a 2-element hash representing self:

require 'json/add/range' x = (1..4).as_json
y = (1...4).as_json
z = ('a'..'d').as_json

Method JSON.create deserializes such a hash, returning a Range object:

Range.json_create(x) Range.json_create(y) Range.json_create(z)

Source

static VALUE range_begin(VALUE range) { return RANGE_BEG(range); }

Returns the object that defines the beginning of self.

(1..4).begin (..2).begin

Related: Range#first, Range#end.

Source

static VALUE range_bsearch(VALUE range) { VALUE beg, end, satisfied = Qnil; int smaller;

/* Implementation notes:
 * Floats are handled by mapping them to 64 bits integers.
 * Apart from sign issues, floats and their 64 bits integer have the
 * same order, assuming they are represented as exponent followed
 * by the mantissa. This is true with or without implicit bit.
 *
 * Finding the average of two ints needs to be careful about
 * potential overflow (since float to long can use 64 bits).
 *
 * The half-open interval (low, high] indicates where the target is located.
 * The loop continues until low and high are adjacent.
 *
 * -1/2 can be either 0 or -1 in C89. However, when low and high are not adjacent,
 * the rounding direction of mid = (low + high) / 2 does not affect the result of
 * the binary search.
 *
 * Note that -0.0 is mapped to the same int as 0.0 as we don't want
 * (-1...0.0).bsearch to yield -0.0.
 */

#define BSEARCH(conv, excl)
do {
RETURN_ENUMERATOR(range, 0, 0);
if (!(excl)) high++;
low--;
while (low + 1 < high) {
mid = ((high < 0) == (low < 0)) ? low + ((high - low) / 2)
: (low + high) / 2;
BSEARCH_CHECK(conv(mid));
if (smaller) {
high = mid;
}
else {
low = mid;
}
}
return satisfied;
} while (0)

#define BSEARCH_FIXNUM(beg, end, excl)
do {
long low = FIX2LONG(beg);
long high = FIX2LONG(end);
long mid;
BSEARCH(INT2FIX, (excl));
} while (0)

beg = RANGE_BEG(range);
end = RANGE_END(range);

if (FIXNUM_P(beg) && FIXNUM_P(end)) {
    BSEARCH_FIXNUM(beg, end, EXCL(range));
}

#if SIZEOF_DOUBLE == 8 && defined(HAVE_INT64_T) else if (RB_FLOAT_TYPE_P(beg) || RB_FLOAT_TYPE_P(end)) { int64_t low = double_as_int64(NIL_P(beg) ? -HUGE_VAL : RFLOAT_VALUE(rb_Float(beg))); int64_t high = double_as_int64(NIL_P(end) ? HUGE_VAL : RFLOAT_VALUE(rb_Float(end))); int64_t mid; BSEARCH(int64_as_double_to_num, EXCL(range)); } #endif else if (is_integer_p(beg) && is_integer_p(end)) { RETURN_ENUMERATOR(range, 0, 0); return bsearch_integer_range(beg, end, EXCL(range)); } else if (is_integer_p(beg) && NIL_P(end)) { VALUE diff = LONG2FIX(1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(beg, '+', 1, diff); BSEARCH_CHECK(mid); if (smaller) { if (FIXNUM_P(beg) && FIXNUM_P(mid)) { BSEARCH_FIXNUM(beg, mid, false); } else { return bsearch_integer_range(beg, mid, false); } } diff = rb_funcall(diff, '', 1, LONG2FIX(2)); beg = mid; } } else if (NIL_P(beg) && is_integer_p(end)) { VALUE diff = LONG2FIX(-1); RETURN_ENUMERATOR(range, 0, 0); while (1) { VALUE mid = rb_funcall(end, '+', 1, diff); BSEARCH_CHECK(mid); if (!smaller) { if (FIXNUM_P(mid) && FIXNUM_P(end)) { BSEARCH_FIXNUM(mid, end, false); } else { return bsearch_integer_range(mid, end, false); } } diff = rb_funcall(diff, '', 1, LONG2FIX(2)); end = mid; } } else { rb_raise(rb_eTypeError, "can't do binary search for %s", rb_obj_classname(beg)); } return range; }

Returns an element from self selected by a binary search.

See Binary Searching.

Source

static VALUE range_count(int argc, VALUE argv, VALUE range) { if (argc != 0) { / It is odd for instance (1...).count(0) to return Infinity. Just let * it loop. / return rb_call_super(argc, argv); } else if (rb_block_given_p()) { / Likewise it is odd for instance (1...).count {|x| x == 0 } to return * Infinity. Just let it loop. */ return rb_call_super(argc, argv); }

VALUE beg = RANGE_BEG(range), end = RANGE_END(range);

if (NIL_P(beg) || NIL_P(end)) {
    /* We are confident that the answer is Infinity. */
    return DBL2NUM(HUGE_VAL);
}

if (is_integer_p(beg)) {
    VALUE size = range_size(range);
    if (!NIL_P(size)) {
        return size;
    }
}

return rb_call_super(argc, argv);

}

Returns the count of elements, based on an argument or block criterion, if given.

With no argument and no block given, returns the number of elements:

(1..4).count
(1...4).count
('a'..'d').count
('a'...'d').count (1..).count
(..4).count

With argument object, returns the number of object found in self, which will usually be zero or one:

(1..4).count(2)
(1..4).count(5)
(1..4).count('a')

With a block given, calls the block with each element; returns the number of elements for which the block returns a truthy value:

(1..4).count {|element| element < 3 }

Related: Range#size.

Source

static VALUE range_cover(VALUE range, VALUE val) { VALUE beg, end;

beg = RANGE_BEG(range);
end = RANGE_END(range);

if (rb_obj_is_kind_of(val, rb_cRange)) {
    return RBOOL(r_cover_range_p(range, beg, end, val));
}
return r_cover_p(range, beg, end, val);

}

Returns true if the given argument is within self, false otherwise.

With non-range argument object, evaluates with <= and <.

For range self with included end value (exclude_end? == false), evaluates thus:

self.begin <= object <= self.end

Examples:

r = (1..4) r.cover?(1)
r.cover?(4)
r.cover?(0)
r.cover?(5)
r.cover?('foo')

r = ('a'..'d') r.cover?('a')
r.cover?('d')
r.cover?(' ')
r.cover?('e')
r.cover?(0)

For range r with excluded end value (exclude_end? == true), evaluates thus:

r.begin <= object < r.end

Examples:

r = (1...4) r.cover?(1)
r.cover?(3)
r.cover?(0)
r.cover?(4)
r.cover?('foo')

r = ('a'...'d') r.cover?('a')
r.cover?('c')
r.cover?(' ')
r.cover?('d')
r.cover?(0)

With range argument range, compares the first and last elements of self and range:

r = (1..4) r.cover?(1..4)
r.cover?(0..4)
r.cover?(1..5)
r.cover?('a'..'d')

r = (1...4) r.cover?(1..3)
r.cover?(1..4)

If begin and end are numeric, cover? behaves like include?

(1..3).cover?(1.5) (1..3).include?(1.5)

But when not numeric, the two methods may differ:

('a'..'d').cover?('cc')
('a'..'d').include?('cc')

Returns false if either:

Beginless ranges cover all values of the same type before the end, excluding the end for exclusive ranges. Beginless ranges cover ranges that end before the end of the beginless range, or at the end of the beginless range for inclusive ranges.

(..2).cover?(1)
(..2).cover?(2)
(..2).cover?(3)
(...2).cover?(2)
(..2).cover?("2")
(..2).cover?(..2)
(..2).cover?(...2)
(..2).cover?(.."2") (...2).cover?(..2)

Endless ranges cover all values of the same type after the beginning. Endless exclusive ranges do not cover endless inclusive ranges.

(2..).cover?(1)
(2..).cover?(3)
(2...).cover?(3)
(2..).cover?(2)
(2..).cover?("2")
(2..).cover?(2..)
(2..).cover?(2...)
(2..).cover?("2"..) (2...).cover?(2..)
(2...).cover?(3...) (2...).cover?(3..)
(3..).cover?(2..)

Ranges that are both beginless and endless cover all values and ranges, and return true for all arguments, with the exception that beginless and endless exclusive ranges do not cover endless inclusive ranges.

(nil...).cover?(Object.new) (nil...).cover?(nil...)
(nil..).cover?(nil...)
(nil...).cover?(nil..)
(nil...).cover?(1..)

Related: Range#include?.

Source

static VALUE range_each(VALUE range) { VALUE beg, end; long i;

RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_size);

beg = RANGE_BEG(range);
end = RANGE_END(range);

if (FIXNUM_P(beg) && NIL_P(end)) {
    range_each_fixnum_endless(beg);
}
else if (FIXNUM_P(beg) && FIXNUM_P(end)) { /* fixnums are special */
    return range_each_fixnum_loop(beg, end, range);
}
else if (RB_INTEGER_TYPE_P(beg) && (NIL_P(end) || RB_INTEGER_TYPE_P(end))) {
    if (SPECIAL_CONST_P(end) || RBIGNUM_POSITIVE_P(end)) { /* end >= FIXNUM_MIN */
        if (!FIXNUM_P(beg)) {
            if (RBIGNUM_NEGATIVE_P(beg)) {
                do {
                    rb_yield(beg);
                } while (!FIXNUM_P(beg = rb_big_plus(beg, INT2FIX(1))));
                if (NIL_P(end)) range_each_fixnum_endless(beg);
                if (FIXNUM_P(end)) return range_each_fixnum_loop(beg, end, range);
            }
            else {
                if (NIL_P(end)) range_each_bignum_endless(beg);
                if (FIXNUM_P(end)) return range;
            }
        }
        if (FIXNUM_P(beg)) {
            i = FIX2LONG(beg);
            do {
                rb_yield(LONG2FIX(i));
            } while (POSFIXABLE(++i));
            beg = LONG2NUM(i);
        }
        ASSUME(!FIXNUM_P(beg));
        ASSUME(!SPECIAL_CONST_P(end));
    }
    if (!FIXNUM_P(beg) && RBIGNUM_SIGN(beg) == RBIGNUM_SIGN(end)) {
        if (EXCL(range)) {
            while (rb_big_cmp(beg, end) == INT2FIX(-1)) {
                rb_yield(beg);
                beg = rb_big_plus(beg, INT2FIX(1));
            }
        }
        else {
            VALUE c;
            while ((c = rb_big_cmp(beg, end)) != INT2FIX(1)) {
                rb_yield(beg);
                if (c == INT2FIX(0)) break;
                beg = rb_big_plus(beg, INT2FIX(1));
            }
        }
    }
}
else if (SYMBOL_P(beg) && (NIL_P(end) || SYMBOL_P(end))) { /* symbols are special */
    beg = rb_sym2str(beg);
    if (NIL_P(end)) {
        rb_str_upto_endless_each(beg, sym_each_i, 0);
    }
    else {
        rb_str_upto_each(beg, rb_sym2str(end), EXCL(range), sym_each_i, 0);
    }
}
else {
    VALUE tmp = rb_check_string_type(beg);

    if (!NIL_P(tmp)) {
        if (!NIL_P(end)) {
            rb_str_upto_each(tmp, end, EXCL(range), each_i, 0);
        }
        else {
            rb_str_upto_endless_each(tmp, each_i, 0);
        }
    }
    else {
        if (!discrete_object_p(beg)) {
            rb_raise(rb_eTypeError, "can't iterate from %s",
                     rb_obj_classname(beg));
        }
        if (!NIL_P(end))
            range_each_func(range, each_i, 0);
        else
            for (;; beg = rb_funcallv(beg, id_succ, 0, 0))
                rb_yield(beg);
    }
}
return range;

}

With a block given, passes each element of self to the block:

a = [] (1..4).each {|element| a.push(element) } a

Raises an exception unless self.first.respond_to?(:succ).

With no block given, returns an enumerator.

Source

static VALUE range_end(VALUE range) { return RANGE_END(range); }

Returns the object that defines the end of self.

(1..4).end
(1...4).end (1..).end

Related: Range#begin, Range#last.

Source

static VALUE range_eql(VALUE range, VALUE obj) { if (range == obj) return Qtrue; if (!rb_obj_is_kind_of(obj, rb_cRange)) return Qfalse; return rb_exec_recursive_paired(recursive_eql, range, obj, obj); }

Returns true if and only if:

Otherwise returns false.

r = (1..5) r.eql?(1..5)
r = Range.new(1, 5) r.eql?('foo')
r.eql?(2..5)
r.eql?(1..4)
r.eql?(1...5)
r.eql?(Range.new(1, 5, true))

Note that even with the same argument, the return values of == and eql? can differ:

(1..2) == (1..2.0)
(1..2).eql? (1..2.0)

Related: Range#==.

Source

static VALUE range_exclude_end_p(VALUE range) { return RBOOL(EXCL(range)); }

Returns true if self excludes its end value; false otherwise:

Range.new(2, 5).exclude_end?
Range.new(2, 5, true).exclude_end? (2..5).exclude_end?
(2...5).exclude_end?

Source

static VALUE range_first(int argc, VALUE *argv, VALUE range) { VALUE n, ary[2];

if (NIL_P(RANGE_BEG(range))) {
    rb_raise(rb_eRangeError, "cannot get the first element of beginless range");
}
if (argc == 0) return RANGE_BEG(range);

rb_scan_args(argc, argv, "1", &n);
ary[0] = n;
ary[1] = rb_ary_new2(NUM2LONG(n));
rb_block_call(range, idEach, 0, 0, first_i, (VALUE)ary);

return ary[1];

}

With no argument, returns the first element of self, if it exists:

(1..4).first
('a'..'d').first

With non-negative integer argument n given, returns the first n elements in an array:

(1..10).first(3) (1..10).first(0) (1..4).first(50)

Raises an exception if there is no first element:

(..4).first

Source

static VALUE range_hash(VALUE range) { st_index_t hash = EXCL(range); VALUE v;

hash = rb_hash_start(hash);
v = rb_hash(RANGE_BEG(range));
hash = rb_hash_uint(hash, NUM2LONG(v));
v = rb_hash(RANGE_END(range));
hash = rb_hash_uint(hash, NUM2LONG(v));
hash = rb_hash_uint(hash, EXCL(range) << 24);
hash = rb_hash_end(hash);

return ST2FIX(hash);

}

Returns the integer hash value for self. Two range objects r0 and r1 have the same hash value if and only if r0.eql?(r1).

Related: Range#eql?, Object#hash.

Returns true if object is an element of self, false otherwise:

(1..4).include?(2)
(1..4).include?(5)
(1..4).include?(4)
(1...4).include?(4)
('a'..'d').include?('b')
('a'..'d').include?('e')
('a'..'d').include?('B')
('a'..'d').include?('d')
('a'...'d').include?('d')

If begin and end are numeric, include? behaves like cover?

(1..3).include?(1.5) (1..3).cover?(1.5)

But when not numeric, the two methods may differ:

('a'..'d').include?('cc') ('a'..'d').cover?('cc')

Related: Range#cover?.

Source

static VALUE range_inspect(VALUE range) { return rb_exec_recursive(inspect_range, range, 0); }

Returns a string representation of self, including begin.inspect and end.inspect:

(1..4).inspect
(1...4).inspect (1..).inspect
(..4).inspect

Note that returns from to_s and inspect may differ:

('a'..'d').to_s
('a'..'d').inspect

Related: Range#to_s.

Source

static VALUE range_last(int argc, VALUE *argv, VALUE range) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot get the last element of endless range"); } if (argc == 0) return RANGE_END(range); if (integer_end_optimizable(range)) { return rb_int_range_last(argc, argv, range); } return rb_ary_last(argc, argv, rb_Array(range)); }

With no argument, returns the last element of self, if it exists:

(1..4).last
('a'..'d').last

Note that last with no argument returns the end element of self even if exclude_end? is true:

(1...4).last
('a'...'d').last

With non-negative integer argument n given, returns the last n elements in an array:

(1..10).last(3) (1..10).last(0) (1..4).last(50)

Note that last with argument does not return the end element of self if exclude_end? it true:

(1...4).last(3)
('a'...'d').last(3)

Raises an exception if there is no last element:

(1..).last

Source

static VALUE range_max(int argc, VALUE *argv, VALUE range) { VALUE e = RANGE_END(range); int nm = FIXNUM_P(e) || rb_obj_is_kind_of(e, rb_cNumeric);

if (NIL_P(RANGE_END(range))) {
    rb_raise(rb_eRangeError, "cannot get the maximum of endless range");
}

VALUE b = RANGE_BEG(range);

if (rb_block_given_p() || (EXCL(range) && !nm)) {
    if (NIL_P(b)) {
        rb_raise(rb_eRangeError, "cannot get the maximum of beginless range with custom comparison method");
    }
    return rb_call_super(argc, argv);
}
else if (argc) {
    VALUE ary[2];
    ID reverse_each;
    CONST_ID(reverse_each, "reverse_each");
    rb_scan_args(argc, argv, "1", &ary[0]);
    ary[1] = rb_ary_new2(NUM2LONG(ary[0]));
    rb_block_call(range, reverse_each, 0, 0, first_i, (VALUE)ary);
    return ary[1];

#if 0 if (integer_end_optimizable(range)) { return rb_int_range_last(argc, argv, range, true); } return rb_ary_reverse(rb_ary_last(argc, argv, rb_Array(range))); #endif } else { int c = NIL_P(b) ? -1 : OPTIMIZED_CMP(b, e);

    if (c > 0)
        return Qnil;
    if (EXCL(range)) {
        if (!RB_INTEGER_TYPE_P(e)) {
            rb_raise(rb_eTypeError, "cannot exclude non Integer end value");
        }
        if (c == 0) return Qnil;
        if (!NIL_P(b) && !RB_INTEGER_TYPE_P(b)) {
            rb_raise(rb_eTypeError, "cannot exclude end value with non Integer begin value");
        }
        if (FIXNUM_P(e)) {
            return LONG2NUM(FIX2LONG(e) - 1);
        }
        return rb_int_minus(e,INT2FIX(1));
    }
    return e;
}

}

Returns the maximum value in self, using method <=> or a given block for comparison.

With no argument and no block given, returns the maximum-valued element of self.

(1..4).max
('a'..'d').max (-4..-1).max

With non-negative integer argument n given, and no block given, returns the n maximum-valued elements of self in an array:

(1..4).max(2)
('a'..'d').max(2) (-4..-1).max(2)
(1..4).max(50)

If a block is given, it is called:

To illustrate:

(1..4).max {|a, b| p [a, b]; a <=> b }

Output:

[2, 1] [3, 2] [4, 3]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).max {|a, b| -(a <=> b) }

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).max(2) {|a, b| -(a <=> b) }
(1..4).max(50) {|a, b| -(a <=> b) }

Returns an empty array if n is zero:

(1..4).max(0)
(1..4).max(0) {|a, b| -(a <=> b) }

Returns nil or an empty array if:

Raises an exception if either:

Related: Range#min, Range#minmax.

Source

static VALUE range_min(int argc, VALUE *argv, VALUE range) { if (NIL_P(RANGE_BEG(range))) { rb_raise(rb_eRangeError, "cannot get the minimum of beginless range"); }

if (rb_block_given_p()) {
    if (NIL_P(RANGE_END(range))) {
        rb_raise(rb_eRangeError, "cannot get the minimum of endless range with custom comparison method");
    }
    return rb_call_super(argc, argv);
}
else if (argc != 0) {
    return range_first(argc, argv, range);
}
else {
    VALUE b = RANGE_BEG(range);
    VALUE e = RANGE_END(range);
    int c = NIL_P(e) ? -1 : OPTIMIZED_CMP(b, e);

    if (c > 0 || (c == 0 && EXCL(range)))
        return Qnil;
    return b;
}

}

Returns the minimum value in self, using method <=> or a given block for comparison.

With no argument and no block given, returns the minimum-valued element of self.

(1..4).min
('a'..'d').min (-4..-1).min

With non-negative integer argument n given, and no block given, returns the n minimum-valued elements of self in an array:

(1..4).min(2)
('a'..'d').min(2) (-4..-1).min(2)
(1..4).min(50)

If a block is given, it is called:

To illustrate:

(1..4).min {|a, b| p [a, b]; a <=> b }

Output:

[2, 1] [3, 1] [4, 1]

With no argument and a block given, returns the return value of the last call to the block:

(1..4).min {|a, b| -(a <=> b) }

With non-negative integer argument n given, and a block given, returns the return values of the last n calls to the block in an array:

(1..4).min(2) {|a, b| -(a <=> b) }
(1..4).min(50) {|a, b| -(a <=> b) }

Returns an empty array if n is zero:

(1..4).min(0)
(1..4).min(0) {|a, b| -(a <=> b) }

Returns nil or an empty array if:

Raises an exception if either:

Related: Range#max, Range#minmax.

Source

static VALUE range_minmax(VALUE range) { if (rb_block_given_p()) { return rb_call_super(0, NULL); } return rb_assoc_new( rb_funcall(range, id_min, 0), rb_funcall(range, id_max, 0) ); }

Returns a 2-element array containing the minimum and maximum value in self, either according to comparison method <=> or a given block.

With no block given, returns the minimum and maximum values, using <=> for comparison:

(1..4).minmax
(1...4).minmax
('a'..'d').minmax (-4..-1).minmax

With a block given, the block must return an integer:

The block is called self.size times to compare elements; returns a 2-element Array containing the minimum and maximum values from self, per the block:

(1..4).minmax {|a, b| -(a <=> b) }

Returns [nil, nil] if:

Raises an exception if self is a beginless or an endless range.

Related: Range#min, Range#max.

Source

static VALUE range_overlap(VALUE range, VALUE other) { if (!rb_obj_is_kind_of(other, rb_cRange)) { rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected Range)", rb_class_name(rb_obj_class(other))); }

VALUE self_beg = RANGE_BEG(range);
VALUE self_end = RANGE_END(range);
int self_excl = EXCL(range);
VALUE other_beg = RANGE_BEG(other);
VALUE other_end = RANGE_END(other);
int other_excl = EXCL(other);

if (empty_region_p(self_beg, other_end, other_excl)) return Qfalse;
if (empty_region_p(other_beg, self_end, self_excl)) return Qfalse;

if (!NIL_P(self_beg) && !NIL_P(other_beg)) {
    VALUE cmp = rb_funcall(self_beg, id_cmp, 1, other_beg);
    if (NIL_P(cmp)) return Qfalse;
    /* if both begin values are equal, no more comparisons needed */
    if (rb_cmpint(cmp, self_beg, other_beg) == 0) return Qtrue;
}
else if (NIL_P(self_beg) && !NIL_P(self_end) && NIL_P(other_beg) && !NIL_P(other_end)) {
    VALUE cmp = rb_funcall(self_end, id_cmp, 1, other_end);
    return RBOOL(!NIL_P(cmp));
}

if (empty_region_p(self_beg, self_end, self_excl)) return Qfalse;
if (empty_region_p(other_beg, other_end, other_excl)) return Qfalse;

return Qtrue;

}

Returns true if range overlaps with self, false otherwise:

(0..2).overlap?(1..3) (0..2).overlap?(3..4) (0..).overlap?(..0)

With non-range argument, raises TypeError.

(1..3).overlap?(1)

Returns false if an internal call to <=> returns nil; that is, the operands are not comparable.

(1..3).overlap?('a'..'d')

Returns false if self or range is empty. “Empty range” means that its begin value is larger than, or equal for an exclusive range, its end value.

(4..1).overlap?(2..3)
(4..1).overlap?(..3)
(4..1).overlap?(2..)
(2...2).overlap?(1..2)

(1..4).overlap?(3..2)
(..4).overlap?(3..2)
(1..).overlap?(3..2)
(1..2).overlap?(2...2)

Returns false if the begin value one of self and range is larger than, or equal if the other is an exclusive range, the end value of the other:

(4..5).overlap?(2..3)
(4..5).overlap?(2...4)

(1..2).overlap?(3..4)
(1...3).overlap?(3..4)

Returns false if the end value one of self and range is larger than, or equal for an exclusive range, the end value of the other:

(4..5).overlap?(2..3)
(4..5).overlap?(2...4)

(1..2).overlap?(3..4)
(1...3).overlap?(3..4)

Note that the method wouldn’t make any assumptions about the beginless range being actually empty, even if its upper bound is the minimum possible value of its type, so all this would return true:

(...-Float::INFINITY).overlap?(...-Float::INFINITY) (..."").overlap?(..."") (...[]).overlap?(...[])

Even if those ranges are effectively empty (no number can be smaller than -Float::INFINITY), they are still considered overlapping with themselves.

Related: Range#cover?.

Source

static VALUE range_reverse_each(VALUE range) { RETURN_SIZED_ENUMERATOR(range, 0, 0, range_enum_reverse_size);

VALUE beg = RANGE_BEG(range);
VALUE end = RANGE_END(range);
int excl = EXCL(range);

if (NIL_P(end)) {
    rb_raise(rb_eTypeError, "can't iterate from %s",
             rb_obj_classname(end));
}

if (FIXNUM_P(beg) && FIXNUM_P(end)) {
    if (excl) {
        if (end == LONG2FIX(FIXNUM_MIN)) return range;

        end = rb_int_minus(end, INT2FIX(1));
    }

    range_reverse_each_fixnum_section(beg, end);
}
else if ((NIL_P(beg) || RB_INTEGER_TYPE_P(beg)) && RB_INTEGER_TYPE_P(end)) {
    if (excl) {
        end = rb_int_minus(end, INT2FIX(1));
    }
    range_reverse_each_positive_bignum_section(beg, end);
    range_reverse_each_fixnum_section(beg, end);
    range_reverse_each_negative_bignum_section(beg, end);
}
else {
    return rb_call_super(0, NULL);
}

return range;

}

With a block given, passes each element of self to the block in reverse order:

a = [] (1..4).reverse_each {|element| a.push(element) } a

a = [] (1...4).reverse_each {|element| a.push(element) } a

With no block given, returns an enumerator.

Source

static VALUE range_size(VALUE range) { VALUE b = RANGE_BEG(range), e = RANGE_END(range);

if (RB_INTEGER_TYPE_P(b)) {
    if (rb_obj_is_kind_of(e, rb_cNumeric)) {
        return ruby_num_interval_step_size(b, e, INT2FIX(1), EXCL(range));
    }
    if (NIL_P(e)) {
        return DBL2NUM(HUGE_VAL);
    }
}

if (!discrete_object_p(b)) {
    CANT_ITERATE_FROM(b);
}

return Qnil;

}

Returns the count of elements in self if both begin and end values are numeric; otherwise, returns nil:

(1..4).size
(1...4).size
(1..).size
('a'..'z').size

If self is not iterable, raises an exception:

(0.5..2.5).size
(..1).size

Related: Range#count.

Source

static VALUE range_step(int argc, VALUE *argv, VALUE range) { VALUE b, e, v, step; int c, dir;

b = RANGE_BEG(range);
e = RANGE_END(range);
v = b;

const VALUE b_num_p = rb_obj_is_kind_of(b, rb_cNumeric);
const VALUE e_num_p = rb_obj_is_kind_of(e, rb_cNumeric);
// For backward compatibility reasons (conforming to behavior before 3.4), String/Symbol
// supports both old behavior ('a'..).step(1) and new behavior ('a'..).step('a')
// Hence the additional conversion/additional checks.
const VALUE str_b = rb_check_string_type(b);
const VALUE sym_b = SYMBOL_P(b) ? rb_sym2str(b) : Qnil;

if (rb_check_arity(argc, 0, 1))
    step = argv[0];
else {
    if (b_num_p || !NIL_P(str_b) || !NIL_P(sym_b) || (NIL_P(b) && e_num_p))
        step = INT2FIX(1);
    else
        rb_raise(rb_eArgError, "step is required for non-numeric ranges");
}

const VALUE step_num_p = rb_obj_is_kind_of(step, rb_cNumeric);

if (step_num_p && b_num_p && rb_equal(step, INT2FIX(0))) {
    rb_raise(rb_eArgError, "step can't be 0");
}

if (!rb_block_given_p()) {
    // This code is allowed to create even beginless ArithmeticSequence, which can be useful,
    // e.g., for array slicing:
    //   ary[(..-1) % 3]
    if (step_num_p && ((b_num_p && (NIL_P(e) || e_num_p)) || (NIL_P(b) && e_num_p))) {
        return rb_arith_seq_new(range, ID2SYM(rb_frame_this_func()), argc, argv,
                range_step_size, b, e, step, EXCL(range));
    }

    // ...but generic Enumerator from beginless range is useless and probably an error.
    if (NIL_P(b)) {
        rb_raise(rb_eArgError, "#step for non-numeric beginless ranges is meaningless");
    }

    RETURN_SIZED_ENUMERATOR(range, argc, argv, 0);
}

if (NIL_P(b)) {
    rb_raise(rb_eArgError, "#step iteration for beginless ranges is meaningless");
}

if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(step)) {
    /* perform summation of numbers in C until their reach Fixnum limit */
    long i = FIX2LONG(b), unit = FIX2LONG(step);
    do {
        rb_yield(LONG2FIX(i));
        i += unit;          /* FIXABLE+FIXABLE never overflow */
    } while (FIXABLE(i));
    b = LONG2NUM(i);

    /* then switch to Bignum API */
    for (;; b = rb_big_plus(b, step))
        rb_yield(b);
}
else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(step)) {
    /* fixnums are special: summation is performed in C for performance */
    long end = FIX2LONG(e);
    long i, unit = FIX2LONG(step);

    if (unit < 0) {
        if (!EXCL(range))
            end -= 1;
        i = FIX2LONG(b);
        while (i > end) {
            rb_yield(LONG2NUM(i));
            i += unit;
        }
    }
    else {
        if (!EXCL(range))
            end += 1;
        i = FIX2LONG(b);
        while (i < end) {
            rb_yield(LONG2NUM(i));
            i += unit;
        }
    }
}
else if (b_num_p && step_num_p && ruby_float_step(b, e, step, EXCL(range), TRUE)) {
    /* done */
}
else if (!NIL_P(str_b) && FIXNUM_P(step)) {
    // backwards compatibility behavior for String only, when no step/Integer step is passed
    // See discussion in https://bugs.ruby-lang.org/issues/18368

    VALUE iter[2] = {INT2FIX(1), step};

    if (NIL_P(e)) {
        rb_str_upto_endless_each(str_b, step_i, (VALUE)iter);
    }
    else {
        rb_str_upto_each(str_b, e, EXCL(range), step_i, (VALUE)iter);
    }
}
else if (!NIL_P(sym_b) && FIXNUM_P(step)) {
    // same as above: backward compatibility for symbols

    VALUE iter[2] = {INT2FIX(1), step};

    if (NIL_P(e)) {
        rb_str_upto_endless_each(sym_b, sym_step_i, (VALUE)iter);
    }
    else {
        rb_str_upto_each(sym_b, rb_sym2str(e), EXCL(range), sym_step_i, (VALUE)iter);
    }
}
else if (NIL_P(e)) {
    // endless range
    for (;; v = rb_funcall(v, id_plus, 1, step))
        rb_yield(v);
}
else if (b_num_p && step_num_p && r_less(step, INT2FIX(0)) < 0) {
    // iterate backwards, for consistency with ArithmeticSequence
    if (EXCL(range)) {
        for (; r_less(e, v) < 0; v = rb_funcall(v, id_plus, 1, step))
            rb_yield(v);
    }
    else {
        for (; (c = r_less(e, v)) <= 0; v = rb_funcall(v, id_plus, 1, step)) {
            rb_yield(v);
            if (!c) break;
        }
    }

}
else if ((dir = r_less(b, e)) == 0) {
    if (!EXCL(range)) {
        rb_yield(v);
    }
}
else if (dir == r_less(b, rb_funcall(b, id_plus, 1, step))) {
    // Direction of the comparison. We use it as a comparison operator in cycle:
    // if begin < end, the cycle performs while value < end (iterating forward)
    // if begin > end, the cycle performs while value > end (iterating backward with
    // a negative step)
    // One preliminary addition to check the step moves iteration in the same direction as
    // from begin to end; otherwise, the iteration should be empty.
    if (EXCL(range)) {
        for (; r_less(v, e) == dir; v = rb_funcall(v, id_plus, 1, step))
            rb_yield(v);
    }
    else {
        for (; (c = r_less(v, e)) == dir || c == 0; v = rb_funcall(v, id_plus, 1, step)) {
            rb_yield(v);
            if (!c) break;
        }
    }
}
return range;

}

Iterates over the elements of range in steps of s. The iteration is performed by + operator:

(0..6).step(2) { puts _1 }

(Time.utc(2022, 2, 24)..Time.utc(2022, 3, 1)).step(246060) { puts _1 }

If + step decreases the value, iteration is still performed when step begin is higher than the end:

(0..6).step(-2) { puts _1 }

(6..0).step(-2) { puts _1 }

(Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step(-246060) { puts _1 }

When the block is not provided, and range boundaries and step are Numeric, the method returns Enumerator::ArithmeticSequence.

(1..5).step(2) (1.0..).step(1.5) (..3r).step(1/3r)

Enumerator::ArithmeticSequence can be further used as a value object for iteration or slicing of collections (see Array#[]). There is a convenience method % with behavior similar to step to produce arithmetic sequences more expressively:

(1..5) % 2

In a generic case, when the block is not provided, Enumerator is returned:

('a'..).step('b')
('a'..).step('b').take(3)

If s is not provided, it is considered 1 for ranges with numeric begin:

(1..5).step { p _1 }

For non-Numeric ranges, step absence is an error:

(Time.utc(2022, 3, 1)..Time.utc(2022, 2, 24)).step { p _1 }

For backward compatibility reasons, String ranges support the iteration both with string step and with integer step. In the latter case, the iteration is performed by calculating the next values with String#succ:

('a'..'e').step(2) { p _1 }

('a'..'e').step { p _1 }

Source

static VALUE range_to_a(VALUE range) { if (NIL_P(RANGE_END(range))) { rb_raise(rb_eRangeError, "cannot convert endless range to an array"); } return rb_call_super(0, 0); }

Returns an array containing the elements in self, if a finite collection; raises an exception otherwise.

(1..4).to_a
(1...4).to_a
('a'..'d').to_a

Source

def to_json(*args) as_json.to_json(*args) end

Returns a JSON string representing self:

require 'json/add/range' puts (1..4).to_json puts (1...4).to_json puts ('a'..'d').to_json

Output:

{"json_class":"Range","a":[1,4,false]} {"json_class":"Range","a":[1,4,true]} {"json_class":"Range","a":["a","d",false]}

Source

static VALUE range_to_s(VALUE range) { VALUE str, str2;

str = rb_obj_as_string(RANGE_BEG(range));
str2 = rb_obj_as_string(RANGE_END(range));
str = rb_str_dup(str);
rb_str_cat(str, "...", EXCL(range) ? 3 : 2);
rb_str_append(str, str2);

return str;

}

Returns a string representation of self, including begin.to_s and end.to_s:

(1..4).to_s
(1...4).to_s (1..).to_s
(..4).to_s

Note that returns from to_s and inspect may differ:

('a'..'d').to_s
('a'..'d').inspect

Related: Range#inspect.