class Socket - Documentation for Ruby 3.5 (original) (raw)
Class Socket provides access to the underlying operating system socket implementations. It can be used to provide more operating system specific functionality than the protocol-specific socket classes.
The constants defined under Socket::Constants are also defined under Socket. For example, Socket::AF_INET is usable as well as Socket::Constants::AF_INET. See Socket::Constants for the list of constants.
What’s a socket?¶ ↑
Sockets are endpoints of a bidirectional communication channel. Sockets can communicate within a process, between processes on the same machine or between different machines. There are many types of socket: TCPSocket, UDPSocket or UNIXSocket for example.
Sockets have their own vocabulary:
domain: The family of protocols:
type: The type of communications between the two endpoints, typically
protocol: Typically zero. This may be used to identify a variant of a protocol.
hostname: The identifier of a network interface:
- a string (hostname, IPv4 or IPv6 address or
broadcast
which specifies a broadcast address) - a zero-length string which specifies INADDR_ANY
- an integer (interpreted as binary address in host byte order).
Quick start¶ ↑
Many of the classes, such as TCPSocket, UDPSocket or UNIXSocket, ease the use of sockets comparatively to the equivalent C programming interface.
Let’s create an internet socket using the IPv4 protocol in a C-like manner:
require 'socket'
s = Socket.new Socket::AF_INET, Socket::SOCK_STREAM s.connect Socket.pack_sockaddr_in(80, 'example.com')
You could also use the TCPSocket class:
s = TCPSocket.new 'example.com', 80
A simple server might look like this:
require 'socket'
server = TCPServer.new 2000
loop do
client = server.accept
client.puts "Hello !"
client.puts "Time is #{Time.now}"
client.close
end
A simple client may look like this:
require 'socket'
s = TCPSocket.new 'localhost', 2000
while line = s.gets
puts line
end
s.close
Exception Handling¶ ↑
Ruby’s Socket implementation raises exceptions based on the error generated by the system dependent implementation. This is why the methods are documented in a way that isolate Unix-based system exceptions from Windows based exceptions. If more information on a particular exception is needed, please refer to the Unix manual pages or the Windows WinSock reference.
Convenience methods¶ ↑
Although the general way to create socket is Socket.new, there are several methods of socket creation for most cases.
TCP client socket
TCP server socket
Socket.tcp_server_loop, TCPServer.open
UNIX client socket
UNIX server socket
Socket.unix_server_loop, UNIXServer.open
Documentation by¶ ↑
- Zach Dennis
- Sam Roberts
- Programming Ruby from The Pragmatic Bookshelf.
Much material in this documentation is taken with permission from Programming Ruby from The Pragmatic Bookshelf.
Constants
ADDRESS_FAMILIES
AF_ALG
Interface to kernel crypto API
AF_APPLETALK
AppleTalk protocol
AF_ATM
Asynchronous Transfer Mode
AF_AX25
AX.25 protocol
AF_BLUETOOTH
Bluetooth low-level socket protocol
AF_CAN
Controller Area Network automotive bus protocol
AF_CCITT
CCITT (now ITU-T) protocols
AF_CHAOS
MIT CHAOS protocols
AF_CNT
Computer Network Technology
AF_COIP
Connection-oriented IP
AF_DATAKIT
Datakit protocol
AF_DEC
DECnet protocol
AF_DECnet
DECnet protocol
AF_DLI
DEC Direct Data Link Interface protocol
AF_E164
CCITT (ITU-T) E.164 recommendation
AF_ECMA
European Computer Manufacturers protocols
AF_HYLINK
NSC Hyperchannel protocol
AF_IB
InfiniBand native addressing
AF_IMPLINK
ARPANET IMP protocol
AF_INET
IPv4 protocol
AF_INET6
IPv6 protocol
AF_IPX
IPX protocol
AF_ISDN
Integrated Services Digital Network
AF_ISO
ISO Open Systems Interconnection protocols
AF_KCM
KCM (kernel connection multiplexor) interface
AF_KEY
Key management protocol, originally developed for usage with IPsec
AF_LAT
Local Area Transport protocol
AF_LINK
Link layer interface
AF_LLC
Logical link control (IEEE 802.2 LLC) protocol
AF_LOCAL
Host-internal protocols
AF_MAX
Maximum address family for this platform
AF_MPLS
Multiprotocol Label Switching
AF_NATM
Native ATM access
AF_NDRV
Network driver raw access
AF_NETBIOS
NetBIOS
AF_NETGRAPH
Netgraph sockets
AF_NETLINK
Kernel user interface device
AF_NS
XEROX NS protocols
AF_OSI
ISO Open Systems Interconnection protocols
AF_PACKET
Direct link-layer access
AF_PPP
Point-to-Point Protocol
AF_PPPOX
Generic PPP transport layer, for setting up L2 tunnels (L2TP and PPPoE)
AF_PUP
PARC Universal Packet protocol
AF_RDS
Reliable Datagram Sockets (RDS) protocol
AF_ROUTE
Internal routing protocol
AF_SIP
Simple Internet Protocol
AF_SNA
IBM SNA protocol
AF_SYSTEM
Kernel event messages
AF_TIPC
TIPC, “cluster domain sockets” protocol
AF_UNIX
UNIX sockets
AF_UNSPEC
Unspecified protocol, any supported address family
AF_VSOCK
VSOCK (originally “VMWare VSockets”) protocol for hypervisor-guest communication
AF_XDP
XDP (express data path) interface
AI_ADDRCONFIG
Accept only if any address is assigned
AI_ALL
Allow all addresses
AI_CANONNAME
Fill in the canonical name
AI_DEFAULT
Default flags for getaddrinfo
AI_MASK
Valid flag mask for getaddrinfo (not for application use)
AI_NUMERICHOST
Prevent host name resolution
AI_NUMERICSERV
Prevent service name resolution
AI_PASSIVE
Get address to use with bind()
AI_V4MAPPED
Accept IPv4-mapped IPv6 addresses
AI_V4MAPPED_CFG
Accept IPv4 mapped addresses if the kernel supports it
CONNECTION_ATTEMPT_DELAY
EAI_ADDRFAMILY
Address family for hostname not supported
EAI_AGAIN
Temporary failure in name resolution
EAI_BADFLAGS
Invalid flags
EAI_BADHINTS
Invalid value for hints
EAI_FAIL
Non-recoverable failure in name resolution
EAI_FAMILY
Address family not supported
EAI_MAX
Maximum error code from getaddrinfo
EAI_MEMORY
Memory allocation failure
EAI_NODATA
No address associated with hostname
EAI_NONAME
Hostname nor servname, or not known
EAI_OVERFLOW
Argument buffer overflow
EAI_PROTOCOL
Resolved protocol is unknown
EAI_SERVICE
Servname not supported for socket type
EAI_SOCKTYPE
Socket type not supported
EAI_SYSTEM
System error returned in errno
HOSTNAME_RESOLUTION_QUEUE_UPDATED
IFF_802_1Q_VLAN
802.1Q VLAN device
IFF_ALLMULTI
receive all multicast packets
IFF_ALTPHYS
use alternate physical connection
IFF_AUTOMEDIA
auto media select active
IFF_BONDING
bonding master or slave
IFF_BRIDGE_PORT
device used as bridge port
IFF_BROADCAST
broadcast address valid
IFF_CANTCHANGE
flags not changeable
IFF_CANTCONFIG
unconfigurable using ioctl(2)
IFF_DEBUG
turn on debugging
IFF_DISABLE_NETPOLL
disable netpoll at run-time
IFF_DONT_BRIDGE
disallow bridging this ether dev
IFF_DORMANT
driver signals dormant
IFF_DRV_OACTIVE
tx hardware queue is full
IFF_DRV_RUNNING
resources allocated
IFF_DYING
interface is winding down
IFF_DYNAMIC
dialup device with changing addresses
IFF_EBRIDGE
ethernet bridging device
IFF_ECHO
echo sent packets
IFF_ISATAP
ISATAP interface (RFC4214)
IFF_LINK0
per link layer defined bit 0
IFF_LINK1
per link layer defined bit 1
IFF_LINK2
per link layer defined bit 2
IFF_LIVE_ADDR_CHANGE
hardware address change when it’s running
IFF_LOOPBACK
loopback net
IFF_LOWER_UP
driver signals L1 up
IFF_MACVLAN_PORT
device used as macvlan port
IFF_MASTER
master of a load balancer
IFF_MASTER_8023AD
bonding master, 802.3ad.
IFF_MASTER_ALB
bonding master, balance-alb.
IFF_MASTER_ARPMON
bonding master, ARP mon in use
IFF_MONITOR
user-requested monitor mode
IFF_MULTICAST
supports multicast
IFF_NOARP
no address resolution protocol
IFF_NOTRAILERS
avoid use of trailers
IFF_OACTIVE
transmission in progress
IFF_OVS_DATAPATH
device used as Open vSwitch datapath port
IFF_POINTOPOINT
point-to-point link
IFF_PORTSEL
can set media type
IFF_PPROMISC
user-requested promisc mode
IFF_PROMISC
receive all packets
IFF_RENAMING
interface is being renamed
IFF_ROUTE
routing entry installed
IFF_RUNNING
resources allocated
IFF_SIMPLEX
can’t hear own transmissions
IFF_SLAVE
slave of a load balancer
IFF_SLAVE_INACTIVE
bonding slave not the curr. active
IFF_SLAVE_NEEDARP
need ARPs for validation
IFF_SMART
interface manages own routes
IFF_STATICARP
static ARP
IFF_SUPP_NOFCS
sending custom FCS
IFF_TEAM_PORT
used as team port
IFF_TX_SKB_SHARING
sharing skbs on transmit
IFF_UNICAST_FLT
unicast filtering
IFF_UP
interface is up
IFF_VOLATILE
volatile flags
IFF_WAN_HDLC
WAN HDLC device
IFF_XMIT_DST_RELEASE
dev_hard_start_xmit() is allowed to release skb->dst
IFNAMSIZ
Maximum interface name size
IF_NAMESIZE
Maximum interface name size
INADDR_ALLHOSTS_GROUP
Multicast group for all systems on this subset
INADDR_ANY
A socket bound to INADDR_ANY receives packets from all interfaces and sends from the default IP address
INADDR_BROADCAST
The network broadcast address
INADDR_LOOPBACK
The loopback address
INADDR_MAX_LOCAL_GROUP
The last local network multicast group
INADDR_NONE
A bitmask for matching no valid IP address
INADDR_UNSPEC_GROUP
The reserved multicast group
INET6_ADDRSTRLEN
Maximum length of an IPv6 address string
INET_ADDRSTRLEN
Maximum length of an IPv4 address string
IPPORT_RESERVED
Default minimum address for bind or connect
IPPORT_USERRESERVED
Default maximum address for bind or connect
IPPROTO_AH
IP6 auth header
IPPROTO_BIP
IPPROTO_DSTOPTS
IP6 destination option
IPPROTO_EGP
Exterior Gateway Protocol
IPPROTO_EON
ISO cnlp
IPPROTO_ESP
IP6 Encapsulated Security Payload
IPPROTO_FRAGMENT
IP6 fragmentation header
IPPROTO_GGP
Gateway to Gateway Protocol
IPPROTO_HELLO
“hello” routing protocol
IPPROTO_HOPOPTS
IP6 hop-by-hop options
IPPROTO_ICMP
Control message protocol
IPPROTO_ICMPV6
ICMP6
IPPROTO_IDP
XNS IDP
IPPROTO_IGMP
Group Management Protocol
IPPROTO_IP
Dummy protocol for IP
IPPROTO_IPV6
IP6 header
IPPROTO_MAX
Maximum IPPROTO constant
IPPROTO_ND
Sun net disk protocol
IPPROTO_NONE
IP6 no next header
IPPROTO_PUP
PARC Universal Packet protocol
IPPROTO_RAW
Raw IP packet
IPPROTO_ROUTING
IP6 routing header
IPPROTO_TCP
TCP
IPPROTO_TP
ISO transport protocol class 4
IPPROTO_UDP
UDP
IPPROTO_XTP
Xpress Transport Protocol
IPV6_ADDRESS_FORMAT
IPV6_CHECKSUM
Checksum offset for raw sockets
IPV6_DONTFRAG
Don’t fragment packets
IPV6_DSTOPTS
Destination option
IPV6_HOPLIMIT
Hop limit
IPV6_HOPOPTS
Hop-by-hop option
IPV6_JOIN_GROUP
Join a group membership
IPV6_LEAVE_GROUP
Leave a group membership
IPV6_MTU_DISCOVER
Path MTU discovery
IPV6_MULTICAST_HOPS
IP6 multicast hops
IPV6_MULTICAST_IF
IP6 multicast interface
IPV6_MULTICAST_LOOP
IP6 multicast loopback
IPV6_NEXTHOP
Next hop address
IPV6_PATHMTU
Retrieve current path MTU
IPV6_PKTINFO
Receive packet information with datagram
IPV6_RECVDSTOPTS
Receive all IP6 options for response
IPV6_RECVERR
Enable extended reliable error message passing
IPV6_RECVHOPLIMIT
Receive hop limit with datagram
IPV6_RECVHOPOPTS
Receive hop-by-hop options
IPV6_RECVPATHMTU
Receive current path MTU with datagram
IPV6_RECVPKTINFO
Receive destination IP address and incoming interface
IPV6_RECVRTHDR
Receive routing header
IPV6_RECVTCLASS
Receive traffic class
IPV6_RTHDR
Allows removal of sticky routing headers
IPV6_RTHDRDSTOPTS
Allows removal of sticky destination options header
IPV6_RTHDR_TYPE_0
Routing header type 0
IPV6_TCLASS
Specify the traffic class
IPV6_UNICAST_HOPS
IP6 unicast hops
IPV6_USE_MIN_MTU
Use the minimum MTU size
IPV6_V6ONLY
Only bind IPv6 with a wildcard bind
IPX_TYPE
IP_ADD_MEMBERSHIP
Add a multicast group membership
IP_ADD_SOURCE_MEMBERSHIP
Add a multicast group membership
IP_BLOCK_SOURCE
Block IPv4 multicast packets with a give source address
IP_DEFAULT_MULTICAST_LOOP
Default multicast loopback
IP_DEFAULT_MULTICAST_TTL
Default multicast TTL
IP_DONTFRAG
Don’t fragment packets
IP_DROP_MEMBERSHIP
Drop a multicast group membership
IP_DROP_SOURCE_MEMBERSHIP
Drop a multicast group membership
IP_FREEBIND
Allow binding to nonexistent IP addresses
IP_HDRINCL
Header is included with data
IP_IPSEC_POLICY
IPsec security policy
IP_MAX_MEMBERSHIPS
Maximum number multicast groups a socket can join
IP_MINTTL
Minimum TTL allowed for received packets
IP_MSFILTER
Multicast source filtering
IP_MTU
The Maximum Transmission Unit of the socket
IP_MTU_DISCOVER
Path MTU discovery
IP_MULTICAST_IF
IP multicast interface
IP_MULTICAST_LOOP
IP multicast loopback
IP_MULTICAST_TTL
IP multicast TTL
IP_ONESBCAST
Force outgoing broadcast datagrams to have the undirected broadcast address
IP_OPTIONS
IP options to be included in packets
IP_PASSSEC
Retrieve security context with datagram
IP_PKTINFO
Receive packet information with datagrams
IP_PKTOPTIONS
Receive packet options with datagrams
IP_PMTUDISC_DO
Always send DF frames
IP_PMTUDISC_DONT
Never send DF frames
IP_PMTUDISC_WANT
Use per-route hints
IP_PORTRANGE
Set the port range for sockets with unspecified port numbers
IP_RECVDSTADDR
Receive IP destination address with datagram
IP_RECVERR
Enable extended reliable error message passing
IP_RECVIF
Receive interface information with datagrams
IP_RECVOPTS
Receive all IP options with datagram
IP_RECVRETOPTS
Receive all IP options for response
IP_RECVSLLA
Receive link-layer address with datagrams
IP_RECVTOS
Receive TOS with incoming packets
IP_RECVTTL
Receive IP TTL with datagrams
IP_RETOPTS
IP options to be included in datagrams
IP_ROUTER_ALERT
Notify transit routers to more closely examine the contents of an IP packet
IP_SENDSRCADDR
Source address for outgoing UDP datagrams
IP_TOS
IP type-of-service
IP_TRANSPARENT
Transparent proxy
IP_TTL
IP time-to-live
IP_UNBLOCK_SOURCE
Unblock IPv4 multicast packets with a give source address
IP_XFRM_POLICY
LOCAL_CONNWAIT
Connect blocks until accepted
LOCAL_CREDS
Pass credentials to receiver
LOCAL_PEERCRED
Retrieve peer credentials
MCAST_BLOCK_SOURCE
Block multicast packets from this source
MCAST_EXCLUDE
Exclusive multicast source filter
MCAST_INCLUDE
Inclusive multicast source filter
MCAST_JOIN_GROUP
Join a multicast group
MCAST_JOIN_SOURCE_GROUP
Join a multicast source group
MCAST_LEAVE_GROUP
Leave a multicast group
MCAST_LEAVE_SOURCE_GROUP
Leave a multicast source group
MCAST_MSFILTER
Multicast source filtering
MCAST_UNBLOCK_SOURCE
Unblock multicast packets from this source
MSG_COMPAT
End of record
MSG_CONFIRM
Confirm path validity
MSG_CTRUNC
Control data lost before delivery
MSG_DONTROUTE
Send without using the routing tables
MSG_DONTWAIT
This message should be non-blocking
MSG_EOF
Data completes connection
MSG_EOR
Data completes record
MSG_ERRQUEUE
Fetch message from error queue
MSG_FASTOPEN
Reduce step of the handshake process
MSG_FIN
MSG_FLUSH
Start of a hold sequence. Dumps to so_temp
MSG_HAVEMORE
Data ready to be read
MSG_HOLD
Hold fragment in so_temp
MSG_MORE
Sender will send more
MSG_NOSIGNAL
Do not generate SIGPIPE
MSG_OOB
Process out-of-band data
MSG_PEEK
Peek at incoming message
MSG_PROXY
Wait for full request
MSG_RCVMORE
Data remains in the current packet
MSG_RST
MSG_SEND
Send the packet in so_temp
MSG_SYN
MSG_TRUNC
Data discarded before delivery
MSG_WAITALL
Wait for full request or error
NI_DGRAM
The service specified is a datagram service (looks up UDP ports)
NI_MAXHOST
Maximum length of a hostname
NI_MAXSERV
Maximum length of a service name
NI_NAMEREQD
A name is required
NI_NOFQDN
An FQDN is not required for local hosts, return only the local part
NI_NUMERICHOST
Return a numeric address
NI_NUMERICSERV
Return the service name as a digit string
PF_ALG
Interface to kernel crypto API
PF_APPLETALK
AppleTalk protocol
PF_ATM
Asynchronous Transfer Mode
PF_AX25
AX.25 protocol
PF_BLUETOOTH
Bluetooth low-level socket protocol
PF_CAN
Controller Area Network automotive bus protocol
PF_CCITT
CCITT (now ITU-T) protocols
PF_CHAOS
MIT CHAOS protocols
PF_CNT
Computer Network Technology
PF_COIP
Connection-oriented IP
PF_DATAKIT
Datakit protocol
PF_DEC
DECnet protocol
PF_DECnet
DECnet protocol
PF_DLI
DEC Direct Data Link Interface protocol
PF_ECMA
European Computer Manufacturers protocols
PF_HYLINK
NSC Hyperchannel protocol
PF_IB
InfiniBand native addressing
PF_IMPLINK
ARPANET IMP protocol
PF_INET
IPv4 protocol
PF_INET6
IPv6 protocol
PF_IPX
IPX protocol
PF_ISDN
Integrated Services Digital Network
PF_ISO
ISO Open Systems Interconnection protocols
PF_KCM
KCM (kernel connection multiplexor) interface
PF_KEY
Key management protocol, originally developed for usage with IPsec
PF_LAT
Local Area Transport protocol
PF_LINK
Link layer interface
PF_LLC
Logical link control (IEEE 802.2 LLC) protocol
PF_LOCAL
Host-internal protocols
PF_MAX
Maximum address family for this platform
PF_MPLS
Multiprotocol Label Switching
PF_NATM
Native ATM access
PF_NDRV
Network driver raw access
PF_NETBIOS
NetBIOS
PF_NETGRAPH
Netgraph sockets
PF_NETLINK
Kernel user interface device
PF_NS
XEROX NS protocols
PF_OSI
ISO Open Systems Interconnection protocols
PF_PACKET
Direct link-layer access
PF_PIP
Help Identify PIP packets
PF_PPP
Point-to-Point Protocol
PF_PPPOX
Generic PPP transport layer, for setting up L2 tunnels (L2TP and PPPoE)
PF_PUP
PARC Universal Packet protocol
PF_RDS
Reliable Datagram Sockets (RDS) protocol
PF_ROUTE
Internal routing protocol
PF_RTIP
Help Identify RTIP packets
PF_SIP
Simple Internet Protocol
PF_SNA
IBM SNA protocol
PF_SYSTEM
Kernel event messages
PF_TIPC
TIPC, “cluster domain sockets” protocol
PF_UNIX
UNIX sockets
PF_UNSPEC
Unspecified protocol, any supported address family
PF_VSOCK
VSOCK (originally “VMWare VSockets”) protocol for hypervisor-guest communication
PF_XDP
XDP (express data path) interface
PF_XTP
eXpress Transfer Protocol
RESOLUTION_DELAY
SCM_BINTIME
Timestamp (bintime)
SCM_CREDENTIALS
The sender’s credentials
SCM_CREDS
Process credentials
SCM_RIGHTS
Access rights
SCM_TIMESTAMP
Timestamp (timeval)
SCM_TIMESTAMPING
Timestamp (timespec list) (Linux 2.6.30)
SCM_TIMESTAMPNS
Timespec (timespec)
SCM_UCRED
User credentials
SCM_WIFI_STATUS
Wifi status (Linux 3.3)
SHUT_RD
Shut down the reading side of the socket
SHUT_RDWR
Shut down the both sides of the socket
SHUT_WR
Shut down the writing side of the socket
SOCK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor.
SOCK_DGRAM
A datagram socket provides connectionless, unreliable messaging
SOCK_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description (see open(2)) referred to by the new file descriptor.
SOCK_PACKET
Device-level packet access
SOCK_RAW
A raw socket provides low-level access for direct access or implementing network protocols
SOCK_RDM
A reliable datagram socket provides reliable delivery of messages
SOCK_SEQPACKET
A sequential packet socket provides sequenced, reliable two-way connection for datagrams
SOCK_STREAM
A stream socket provides a sequenced, reliable two-way connection for a byte stream
SOL_ATALK
AppleTalk socket options
SOL_AX25
AX.25 socket options
SOL_IP
IP socket options
SOL_IPX
IPX socket options
SOL_SOCKET
Socket-level options
SOL_TCP
TCP socket options
SOL_UDP
UDP socket options
SOMAXCONN
Maximum connection requests that may be queued for a socket
SOPRI_BACKGROUND
Background socket priority
SOPRI_INTERACTIVE
Interactive socket priority
SOPRI_NORMAL
Normal socket priority
SO_ACCEPTCONN
Socket has had listen() called on it
SO_ACCEPTFILTER
There is an accept filter
SO_ALLZONES
Bypass zone boundaries
SO_ATTACH_FILTER
Attach an accept filter
SO_BINDTODEVICE
Only send packets from the given interface
SO_BINTIME
Receive timestamp with datagrams (bintime)
SO_BPF_EXTENSIONS
Query supported BPF extensions (Linux 3.14)
SO_BROADCAST
Permit sending of broadcast messages
SO_BUSY_POLL
Set the threshold in microseconds for low latency polling (Linux 3.11)
SO_CONNECT_TIME
Returns the number of seconds a socket has been connected. This option is only valid for connection-oriented protocols (Windows)
SO_DEBUG
Debug info recording
SO_DETACH_FILTER
Detach an accept filter
SO_DOMAIN
Domain given for socket() (Linux 2.6.32)
SO_DONTROUTE
Use interface addresses
SO_DONTTRUNC
Retain unread data
SO_ERROR
Get and clear the error status
SO_GET_FILTER
Obtain filter set by SO_ATTACH_FILTER (Linux 3.8)
SO_INCOMING_CPU
Receive the cpu attached to the socket (Linux 3.19)
SO_INCOMING_NAPI_ID
Receive the napi ID attached to a RX queue (Linux 4.12)
SO_KEEPALIVE
Keep connections alive
SO_LINGER
Linger on close if data is present
SO_LOCK_FILTER
Lock the filter attached to a socket (Linux 3.9)
SO_MAC_EXEMPT
Mandatory Access Control exemption for unlabeled peers
SO_MARK
Set the mark for mark-based routing (Linux 2.6.25)
SO_MAX_PACING_RATE
Cap the rate computed by transport layer. [bytes per second] (Linux 3.13)
SO_NKE
Install socket-level Network Kernel Extension
SO_NOFCS
Set netns of a socket (Linux 3.4)
SO_NOSIGPIPE
Don’t SIGPIPE on EPIPE
SO_NO_CHECK
Disable checksums
SO_NREAD
Get first packet byte count
SO_OOBINLINE
Leave received out-of-band data in-line
SO_PASSCRED
Receive SCM_CREDENTIALS messages
SO_PASSSEC
Toggle security context passing (Linux 2.6.18)
SO_PEEK_OFF
Set the peek offset (Linux 3.4)
SO_PEERCRED
The credentials of the foreign process connected to this socket
SO_PEERNAME
Name of the connecting user
SO_PEERSEC
Obtain the security credentials (Linux 2.6.2)
SO_PRIORITY
The protocol-defined priority for all packets on this socket
SO_PROTOCOL
Protocol given for socket() (Linux 2.6.32)
SO_RCVBUF
Receive buffer size
SO_RCVBUFFORCE
Receive buffer size without rmem_max limit (Linux 2.6.14)
SO_RCVLOWAT
Receive low-water mark
SO_RCVTIMEO
Receive timeout
SO_RECVUCRED
Receive user credentials with datagram
SO_REUSEADDR
Allow local address reuse
SO_REUSEPORT
Allow local address and port reuse
SO_RTABLE
Set the routing table for this socket (OpenBSD)
SO_RXQ_OVFL
Toggle cmsg for number of packets dropped (Linux 2.6.33)
SO_SECURITY_AUTHENTICATION
SO_SECURITY_ENCRYPTION_NETWORK
SO_SECURITY_ENCRYPTION_NETWORK
SO_SECURITY_ENCRYPTION_TRANSPORT
SO_SECURITY_ENCRYPTION_TRANSPORT
SO_SELECT_ERR_QUEUE
Make select() detect socket error queue with errorfds (Linux 3.10)
SO_SETFIB
Set the associated routing table for the socket (FreeBSD)
SO_SNDBUF
Send buffer size
SO_SNDBUFFORCE
Send buffer size without wmem_max limit (Linux 2.6.14)
SO_SNDLOWAT
Send low-water mark
SO_SNDTIMEO
Send timeout
SO_TIMESTAMP
Receive timestamp with datagrams (timeval)
SO_TIMESTAMPING
Time stamping of incoming and outgoing packets (Linux 2.6.30)
SO_TIMESTAMPNS
Receive nanosecond timestamp with datagrams (timespec)
SO_TYPE
Get the socket type
SO_USELOOPBACK
Bypass hardware when possible
SO_USER_COOKIE
Setting an identifier for ipfw purpose mainly
SO_WANTMORE
Give a hint when more data is ready
SO_WANTOOBFLAG
OOB data is wanted in MSG_FLAG on receive
SO_WIFI_STATUS
Toggle cmsg for wifi status (Linux 3.3)
TCP_CONGESTION
TCP congestion control algorithm (Linux 2.6.13, glibc 2.6)
TCP_CONNECTION_INFO
Retrieve information about this socket (macOS)
TCP_COOKIE_TRANSACTIONS
TCP Cookie Transactions (Linux 2.6.33, glibc 2.18)
TCP_CORK
Don’t send partial frames (Linux 2.2, glibc 2.2)
TCP_DEFER_ACCEPT
Don’t notify a listening socket until data is ready (Linux 2.4, glibc 2.2)
TCP_FASTOPEN
Reduce step of the handshake process (Linux 3.7, glibc 2.18)
TCP_INFO
Retrieve information about this socket (Linux 2.4, glibc 2.2)
TCP_KEEPALIVE
Idle time before keepalive probes are sent (macOS)
TCP_KEEPCNT
Maximum number of keepalive probes allowed before dropping a connection (Linux 2.4, glibc 2.2)
TCP_KEEPIDLE
Idle time before keepalive probes are sent (Linux 2.4, glibc 2.2)
TCP_KEEPINTVL
Time between keepalive probes (Linux 2.4, glibc 2.2)
TCP_LINGER2
Lifetime of orphaned FIN_WAIT2 sockets (Linux 2.4, glibc 2.2)
TCP_MAXSEG
Set maximum segment size
TCP_MD5SIG
Use MD5 digests (RFC2385, Linux 2.6.20, glibc 2.7)
TCP_NODELAY
Don’t delay sending to coalesce packets
TCP_NOOPT
Don’t use TCP options
TCP_NOPUSH
Don’t push the last block of write
TCP_QUEUE_SEQ
Sequence of a queue for repair mode (Linux 3.5, glibc 2.18)
TCP_QUICKACK
Enable quickack mode (Linux 2.4.4, glibc 2.3)
TCP_REPAIR
Repair mode (Linux 3.5, glibc 2.18)
TCP_REPAIR_OPTIONS
Options for repair mode (Linux 3.5, glibc 2.18)
TCP_REPAIR_QUEUE
Queue for repair mode (Linux 3.5, glibc 2.18)
TCP_SYNCNT
Number of SYN retransmits before a connection is dropped (Linux 2.4, glibc 2.2)
TCP_THIN_DUPACK
Duplicated acknowledgments handling for thin-streams (Linux 2.6.34, glibc 2.18)
TCP_THIN_LINEAR_TIMEOUTS
Linear timeouts for thin-streams (Linux 2.6.34, glibc 2.18)
TCP_TIMESTAMP
TCP timestamp (Linux 3.9, glibc 2.18)
TCP_USER_TIMEOUT
Max timeout before a TCP connection is aborted (Linux 2.6.37, glibc 2.18)
TCP_WINDOW_CLAMP
Clamp the size of the advertised window (Linux 2.4, glibc 2.2)
UDP_CORK
Don’t send partial frames (Linux 2.5.44, glibc 2.11)
Public Class Methods
Source
def self.accept_loop(*sockets) sockets.flatten!(1) if sockets.empty? raise ArgumentError, "no sockets" end loop { readable, _, _ = IO.select(sockets) readable.each {|r| sock, addr = r.accept_nonblock(exception: false) next if sock == :wait_readable yield sock, addr } } end
yield socket and client address for each a connection accepted via given sockets.
The arguments are a list of sockets. The individual argument should be a socket or an array of sockets.
This method yields the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.
Source
static VALUE sock_s_getaddrinfo(int argc, VALUE *argv, VALUE _) { VALUE host, port, family, socktype, protocol, flags, ret, revlookup; struct addrinfo hints; struct rb_addrinfo *res; int norevlookup;
rb_scan_args(argc, argv, "25", &host, &port, &family, &socktype, &protocol, &flags, &revlookup);
MEMZERO(&hints, struct addrinfo, 1);
hints.ai_family = NIL_P(family) ? PF_UNSPEC : rsock_family_arg(family);
if (!NIL_P(socktype)) {
hints.ai_socktype = rsock_socktype_arg(socktype);
}
if (!NIL_P(protocol)) {
hints.ai_protocol = NUM2INT(protocol);
}
if (!NIL_P(flags)) {
hints.ai_flags = NUM2INT(flags);
}
if (NIL_P(revlookup) || !rsock_revlookup_flag(revlookup, &norevlookup)) {
norevlookup = rsock_do_not_reverse_lookup;
}
res = rsock_getaddrinfo(host, port, &hints, 0);
ret = make_addrinfo(res, norevlookup);
rb_freeaddrinfo(res);
return ret;
}
Obtains address information for nodename:servname.
Note that Addrinfo.getaddrinfo provides the same functionality in an object oriented style.
family should be an address family such as: :INET, :INET6, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol should be a protocol defined in the family, and defaults to 0 for the family.
flags should be bitwise OR of Socket::AI_* constants.
Socket.getaddrinfo("www.ruby-lang.org", "http", nil, :STREAM)
Socket.getaddrinfo("localhost", nil)
reverse_lookup directs the form of the third element, and has to be one of below. If reverse_lookup is omitted, the default value is nil
.
+true+, +:hostname+: hostname is obtained from numeric address using reverse lookup, which may take a time. +false+, +:numeric+: hostname is the same as numeric address. +nil+: obey to the current +do_not_reverse_lookup+ flag.
If Addrinfo object is preferred, use Addrinfo.getaddrinfo.
Source
static VALUE sock_s_gethostbyaddr(int argc, VALUE *argv, VALUE _) { VALUE addr, family; struct hostent *h; char **pch; VALUE ary, names; int t = AF_INET;
rb_warn("Socket.gethostbyaddr is deprecated; use Addrinfo#getnameinfo instead.");
rb_scan_args(argc, argv, "11", &addr, &family);
StringValue(addr);
if (!NIL_P(family)) {
t = rsock_family_arg(family);
}
#ifdef AF_INET6 else if (RSTRING_LEN(addr) == 16) { t = AF_INET6; } #endif h = gethostbyaddr(RSTRING_PTR(addr), RSTRING_SOCKLEN(addr), t); if (h == NULL) { #ifdef HAVE_HSTRERROR extern int h_errno; rb_raise(rb_eSocket, "%s", (char*)hstrerror(h_errno)); #else rb_raise(rb_eSocket, "host not found"); #endif } ary = rb_ary_new(); rb_ary_push(ary, rb_str_new2(h->h_name)); names = rb_ary_new(); rb_ary_push(ary, names); if (h->h_aliases != NULL) { for (pch = h->h_aliases; *pch; pch++) { rb_ary_push(names, rb_str_new2(*pch)); } } rb_ary_push(ary, INT2NUM(h->h_addrtype)); #ifdef h_addr for (pch = h->h_addr_list; *pch; pch++) { rb_ary_push(ary, rb_str_new(*pch, h->h_length)); } #else rb_ary_push(ary, rb_str_new(h->h_addr, h->h_length)); #endif
return ary;
}
Use Addrinfo#getnameinfo instead. This method is deprecated for the following reasons:
- Uncommon address representation: 4/16-bytes binary string to represent IPv4/IPv6 address.
- gethostbyaddr() may take a long time and it may block other threads. (GVL cannot be released since gethostbyname() is not thread safe.)
- This method uses gethostbyname() function already removed from POSIX.
This method obtains the host information for address.
p Socket.gethostbyaddr([221,186,184,68].pack("CCCC")) #=> ["carbon.ruby-lang.org", [], 2, "\xDD\xBA\xB8D"]
p Socket.gethostbyaddr([127,0,0,1].pack("CCCC")) ["localhost", [], 2, "\x7F\x00\x00\x01"] p Socket.gethostbyaddr(([0]*15+[1]).pack("C"*16)) #=> ["localhost", ["ip6-localhost", "ip6-loopback"], 10, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"]
Source
static VALUE sock_s_gethostbyname(VALUE obj, VALUE host) { rb_warn("Socket.gethostbyname is deprecated; use Addrinfo.getaddrinfo instead."); struct rb_addrinfo *res = rsock_addrinfo(host, Qnil, AF_UNSPEC, SOCK_STREAM, AI_CANONNAME); return rsock_make_hostent(host, res, sock_sockaddr); }
Use Addrinfo.getaddrinfo instead. This method is deprecated for the following reasons:
- The 3rd element of the result is the address family of the first address. The address families of the rest of the addresses are not returned.
- Uncommon address representation: 4/16-bytes binary string to represent IPv4/IPv6 address.
- gethostbyname() may take a long time and it may block other threads. (GVL cannot be released since gethostbyname() is not thread safe.)
- This method uses gethostbyname() function already removed from POSIX.
This method obtains the host information for hostname.
p Socket.gethostbyname("hal")
Source
static VALUE sock_gethostname(VALUE obj) { #if defined(NI_MAXHOST)
define RUBY_MAX_HOST_NAME_LEN NI_MAXHOST
#elif defined(HOST_NAME_MAX)
define RUBY_MAX_HOST_NAME_LEN HOST_NAME_MAX
#else
define RUBY_MAX_HOST_NAME_LEN 1024
#endif
long len = RUBY_MAX_HOST_NAME_LEN;
VALUE name;
name = rb_str_new(0, len);
while (gethostname(RSTRING_PTR(name), len) < 0) {
int e = errno;
switch (e) {
case ENAMETOOLONG:
#ifdef linux case EINVAL: /* glibc before version 2.1 uses EINVAL instead of ENAMETOOLONG */ #endif break; default: rb_syserr_fail(e, "gethostname(3)"); } rb_str_modify_expand(name, len); len += len; } rb_str_resize(name, strlen(RSTRING_PTR(name))); return name; }
Returns the hostname.
p Socket.gethostname
Note that it is not guaranteed to be able to convert to IP address using gethostbyname, getaddrinfo, etc. If you need local IP address, use Socket.ip_address_list.
Source
static VALUE socket_s_getifaddrs(VALUE self) { return rsock_getifaddrs(); }
Returns an array of interface addresses. An element of the array is an instance of Socket::Ifaddr.
This method can be used to find multicast-enabled interfaces:
pp Socket.getifaddrs.reject {|ifaddr| !ifaddr.addr.ip? || (ifaddr.flags & Socket::IFF_MULTICAST == 0) }.map {|ifaddr| [ifaddr.name, ifaddr.ifindex, ifaddr.addr] }
Example result on GNU/Linux:
pp Socket.getifaddrs
Example result on FreeBSD:
pp Socket.getifaddrs
Source
static VALUE sock_s_getnameinfo(int argc, VALUE *argv, VALUE _) { VALUE sa, af = Qnil, host = Qnil, port = Qnil, flags, tmp; char hbuf[1024], pbuf[1024]; int fl; struct rb_addrinfo *res = NULL; struct addrinfo hints, *r; int error, saved_errno; union_sockaddr ss; struct sockaddr *sap; socklen_t salen;
sa = flags = Qnil;
rb_scan_args(argc, argv, "11", &sa, &flags);
fl = 0;
if (!NIL_P(flags)) {
fl = NUM2INT(flags);
}
tmp = rb_check_sockaddr_string_type(sa);
if (!NIL_P(tmp)) {
sa = tmp;
if (sizeof(ss) < (size_t)RSTRING_LEN(sa)) {
rb_raise(rb_eTypeError, "sockaddr length too big");
}
memcpy(&ss, RSTRING_PTR(sa), RSTRING_LEN(sa));
if (!VALIDATE_SOCKLEN(&ss.addr, RSTRING_LEN(sa))) {
rb_raise(rb_eTypeError, "sockaddr size differs - should not happen");
}
sap = &ss.addr;
salen = RSTRING_SOCKLEN(sa);
goto call_nameinfo;
}
tmp = rb_check_array_type(sa);
if (!NIL_P(tmp)) {
sa = tmp;
MEMZERO(&hints, struct addrinfo, 1);
if (RARRAY_LEN(sa) == 3) {
af = RARRAY_AREF(sa, 0);
port = RARRAY_AREF(sa, 1);
host = RARRAY_AREF(sa, 2);
}
else if (RARRAY_LEN(sa) >= 4) {
af = RARRAY_AREF(sa, 0);
port = RARRAY_AREF(sa, 1);
host = RARRAY_AREF(sa, 3);
if (NIL_P(host)) {
host = RARRAY_AREF(sa, 2);
}
else {
/*
* 4th element holds numeric form, don't resolve.
* see rsock_ipaddr().
*/
#ifdef AI_NUMERICHOST /* AIX 4.3.3 doesn't have AI_NUMERICHOST. / hints.ai_flags |= AI_NUMERICHOST; #endif } } else { rb_raise(rb_eArgError, "array size should be 3 or 4, %ld given", RARRAY_LEN(sa)); } hints.ai_socktype = (fl & NI_DGRAM) ? SOCK_DGRAM : SOCK_STREAM; / af */ hints.ai_family = NIL_P(af) ? PF_UNSPEC : rsock_family_arg(af); res = rsock_getaddrinfo(host, port, &hints, 0); sap = res->ai->ai_addr; salen = res->ai->ai_addrlen; } else { rb_raise(rb_eTypeError, "expecting String or Array"); }
call_nameinfo: error = rb_getnameinfo(sap, salen, hbuf, sizeof(hbuf), pbuf, sizeof(pbuf), fl); if (error) goto error_exit_name; if (res) { for (r = res->ai->ai_next; r; r = r->ai_next) { char hbuf2[1024], pbuf2[1024];
sap = r->ai_addr;
salen = r->ai_addrlen;
error = rb_getnameinfo(sap, salen, hbuf2, sizeof(hbuf2),
pbuf2, sizeof(pbuf2), fl);
if (error) goto error_exit_name;
if (strcmp(hbuf, hbuf2) != 0|| strcmp(pbuf, pbuf2) != 0) {
rb_freeaddrinfo(res);
rb_raise(rb_eSocket, "sockaddr resolved to multiple nodename");
}
}
rb_freeaddrinfo(res);
}
return rb_assoc_new(rb_str_new2(hbuf), rb_str_new2(pbuf));
error_exit_name: saved_errno = errno; if (res) rb_freeaddrinfo(res); errno = saved_errno; rsock_raise_resolution_error("getnameinfo", error);
UNREACHABLE_RETURN(Qnil);
}
Obtains name information for sockaddr.
sockaddr should be one of follows.
- packed sockaddr string such as Socket.sockaddr_in(80, “127.0.0.1”)
- 3-elements array such as [“AF_INET”, 80, “127.0.0.1”]
- 4-elements array such as [“AF_INET”, 80, ignored, “127.0.0.1”]
flags should be bitwise OR of Socket::NI_* constants.
Note: The last form is compatible with IPSocket#addr and IPSocket#peeraddr.
Socket.getnameinfo(Socket.sockaddr_in(80, "127.0.0.1"))
Socket.getnameinfo(["AF_INET", 80, "127.0.0.1"])
Socket.getnameinfo(["AF_INET", 80, "localhost", "127.0.0.1"])
If Addrinfo object is preferred, use Addrinfo#getnameinfo.
Source
static VALUE sock_s_getservbyname(int argc, VALUE *argv, VALUE _) { VALUE service, proto; struct servent *sp; long port; const char *servicename, *protoname = "tcp";
rb_scan_args(argc, argv, "11", &service, &proto);
StringValue(service);
if (!NIL_P(proto)) StringValue(proto);
servicename = StringValueCStr(service);
if (!NIL_P(proto)) protoname = StringValueCStr(proto);
sp = getservbyname(servicename, protoname);
if (sp) {
port = ntohs(sp->s_port);
}
else {
char *end;
port = STRTOUL(servicename, &end, 0);
if (*end != '\0') {
rb_raise(rb_eSocket, "no such service %s/%s", servicename, protoname);
}
}
return INT2FIX(port);
}
Obtains the port number for service_name.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyname("smtp")
Socket.getservbyname("shell")
Socket.getservbyname("syslog", "udp")
Source
static VALUE sock_s_getservbyport(int argc, VALUE *argv, VALUE _) { VALUE port, proto; struct servent *sp; long portnum; const char *protoname = "tcp";
rb_scan_args(argc, argv, "11", &port, &proto);
portnum = NUM2LONG(port);
if (portnum != (uint16_t)portnum) {
const char *s = portnum > 0 ? "big" : "small";
rb_raise(rb_eRangeError, "integer %ld too %s to convert into `int16_t'", portnum, s);
}
if (!NIL_P(proto)) protoname = StringValueCStr(proto);
sp = getservbyport((int)htons((uint16_t)portnum), protoname);
if (!sp) {
rb_raise(rb_eSocket, "no such service for port %d/%s", (int)portnum, protoname);
}
return rb_str_new2(sp->s_name);
}
Obtains the port number for port.
If protocol_name is not given, “tcp” is assumed.
Socket.getservbyport(80)
Socket.getservbyport(514, "tcp")
Socket.getservbyport(514, "udp")
Source
static VALUE socket_s_ip_address_list(VALUE self) { #if defined(HAVE_GETIFADDRS) struct ifaddrs *ifp = NULL; struct ifaddrs *p; int ret; VALUE list;
ret = getifaddrs(&ifp);
if (ret == -1) {
rb_sys_fail("getifaddrs");
}
list = rb_ary_new();
for (p = ifp; p; p = p->ifa_next) {
if (p->ifa_addr != NULL && IS_IP_FAMILY(p->ifa_addr->sa_family)) {
struct sockaddr *addr = p->ifa_addr;
#if defined(AF_INET6) && defined(__sun) /* * OpenIndiana SunOS 5.11 getifaddrs() returns IPv6 link local * address with sin6_scope_id == 0. * So fill it from the interface name (ifa_name). */ struct sockaddr_in6 addr6; if (addr->sa_family == AF_INET6) { socklen_t len = (socklen_t)sizeof(struct sockaddr_in6); memcpy(&addr6, addr, len); addr = (struct sockaddr *)&addr6; if (IN6_IS_ADDR_LINKLOCAL(&addr6.sin6_addr) && addr6.sin6_scope_id == 0) { unsigned int ifindex = if_nametoindex(p->ifa_name); if (ifindex != 0) { addr6.sin6_scope_id = ifindex; } } } #endif rb_ary_push(list, sockaddr_obj(addr, sockaddr_len(addr))); } }
freeifaddrs(ifp);
return list;
#elif defined(SIOCGLIFCONF) && defined(SIOCGLIFNUM) /* Solaris if_tcp(7P) */ int fd = -1; int ret; struct lifnum ln; struct lifconf lc; const char *reason = NULL; int save_errno; int i; VALUE list = Qnil;
lc.lifc_buf = NULL;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd == -1)
rb_sys_fail("socket(2)");
memset(&ln, 0, sizeof(ln));
ln.lifn_family = AF_UNSPEC;
ret = ioctl(fd, SIOCGLIFNUM, &ln);
if (ret == -1) {
reason = "SIOCGLIFNUM";
goto finish;
}
memset(&lc, 0, sizeof(lc));
lc.lifc_family = AF_UNSPEC;
lc.lifc_flags = 0;
lc.lifc_len = sizeof(struct lifreq) * ln.lifn_count;
lc.lifc_req = xmalloc(lc.lifc_len);
ret = ioctl(fd, SIOCGLIFCONF, &lc);
if (ret == -1) {
reason = "SIOCGLIFCONF";
goto finish;
}
list = rb_ary_new();
for (i = 0; i < ln.lifn_count; i++) {
struct lifreq *req = &lc.lifc_req[i];
if (IS_IP_FAMILY(req->lifr_addr.ss_family)) {
if (req->lifr_addr.ss_family == AF_INET6 &&
IN6_IS_ADDR_LINKLOCAL(&((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_addr) &&
((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_scope_id == 0) {
struct lifreq req2;
memcpy(req2.lifr_name, req->lifr_name, LIFNAMSIZ);
ret = ioctl(fd, SIOCGLIFINDEX, &req2);
if (ret == -1) {
reason = "SIOCGLIFINDEX";
goto finish;
}
((struct sockaddr_in6 *)(&req->lifr_addr))->sin6_scope_id = req2.lifr_index;
}
rb_ary_push(list, sockaddr_obj((struct sockaddr *)&req->lifr_addr, req->lifr_addrlen));
}
}
finish: save_errno = errno; xfree(lc.lifc_req); if (fd != -1) close(fd); errno = save_errno;
if (reason)
rb_syserr_fail(save_errno, reason);
return list;
#elif defined(SIOCGIFCONF) int fd = -1; int ret; #define EXTRA_SPACE ((int)(sizeof(struct ifconf) + sizeof(union_sockaddr))) char initbuf[4096+EXTRA_SPACE]; char *buf = initbuf; int bufsize; struct ifconf conf; struct ifreq *req; VALUE list = Qnil; const char *reason = NULL; int save_errno;
fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd == -1)
rb_sys_fail("socket(2)");
bufsize = sizeof(initbuf);
buf = initbuf;
retry: conf.ifc_len = bufsize; conf.ifc_req = (struct ifreq *)buf;
/* fprintf(stderr, "bufsize: %d\n", bufsize); */
ret = ioctl(fd, SIOCGIFCONF, &conf);
if (ret == -1) {
reason = "SIOCGIFCONF";
goto finish;
}
/* fprintf(stderr, "conf.ifc_len: %d\n", conf.ifc_len); */
if (bufsize - EXTRA_SPACE < conf.ifc_len) {
if (bufsize < conf.ifc_len) {
/* NetBSD returns required size for all interfaces. */
bufsize = conf.ifc_len + EXTRA_SPACE;
}
else {
bufsize = bufsize << 1;
}
if (buf == initbuf)
buf = NULL;
buf = xrealloc(buf, bufsize);
goto retry;
}
close(fd);
fd = -1;
list = rb_ary_new();
req = conf.ifc_req;
while ((char*)req < (char*)conf.ifc_req + conf.ifc_len) {
struct sockaddr *addr = &req->ifr_addr;
if (IS_IP_FAMILY(addr->sa_family)) {
rb_ary_push(list, sockaddr_obj(addr, sockaddr_len(addr)));
}
#ifdef HAVE_STRUCT_SOCKADDR_SA_LEN
ifndef _SIZEOF_ADDR_IFREQ
define _SIZEOF_ADDR_IFREQ(r) \
(sizeof(struct ifreq) + \
(sizeof(struct sockaddr) < (r).ifr_addr.sa_len ? \
(r).ifr_addr.sa_len - sizeof(struct sockaddr) : \
0))
endif
req = (struct ifreq *)((char*)req + _SIZEOF_ADDR_IFREQ(*req));
#else req = (struct ifreq )((char)req + sizeof(struct ifreq)); #endif }
finish:
save_errno = errno;
if (buf != initbuf)
xfree(buf);
if (fd != -1)
close(fd);
errno = save_errno;
if (reason)
rb_syserr_fail(save_errno, reason);
return list;
#undef EXTRA_SPACE #elif defined(_WIN32) typedef struct ip_adapter_unicast_address_st { unsigned LONG_LONG dummy0; struct ip_adapter_unicast_address_st *Next; struct { struct sockaddr *lpSockaddr; int iSockaddrLength; } Address; int dummy1; int dummy2; int dummy3; long dummy4; long dummy5; long dummy6; } ip_adapter_unicast_address_t; typedef struct ip_adapter_anycast_address_st { unsigned LONG_LONG dummy0; struct ip_adapter_anycast_address_st *Next; struct { struct sockaddr *lpSockaddr; int iSockaddrLength; } Address; } ip_adapter_anycast_address_t; typedef struct ip_adapter_addresses_st { unsigned LONG_LONG dummy0; struct ip_adapter_addresses_st *Next; void *dummy1; ip_adapter_unicast_address_t *FirstUnicastAddress; ip_adapter_anycast_address_t *FirstAnycastAddress; void *dummy2; void *dummy3; void *dummy4; void *dummy5; void *dummy6; BYTE dummy7[8]; DWORD dummy8; DWORD dummy9; DWORD dummy10; DWORD IfType; int OperStatus; DWORD dummy12; DWORD dummy13[16]; void *dummy14; } ip_adapter_addresses_t; typedef ULONG (WINAPI *GetAdaptersAddresses_t)(ULONG, ULONG, PVOID, ip_adapter_addresses_t *, PULONG); HMODULE h; GetAdaptersAddresses_t pGetAdaptersAddresses; ULONG len; DWORD ret; ip_adapter_addresses_t *adapters; VALUE list;
h = LoadLibrary("iphlpapi.dll");
if (!h)
rb_notimplement();
pGetAdaptersAddresses = (GetAdaptersAddresses_t)GetProcAddress(h, "GetAdaptersAddresses");
if (!pGetAdaptersAddresses) {
FreeLibrary(h);
rb_notimplement();
}
ret = pGetAdaptersAddresses(AF_UNSPEC, 0, NULL, NULL, &len);
if (ret != ERROR_SUCCESS && ret != ERROR_BUFFER_OVERFLOW) {
errno = rb_w32_map_errno(ret);
FreeLibrary(h);
rb_sys_fail("GetAdaptersAddresses");
}
adapters = (ip_adapter_addresses_t *)ALLOCA_N(BYTE, len);
ret = pGetAdaptersAddresses(AF_UNSPEC, 0, NULL, adapters, &len);
if (ret != ERROR_SUCCESS) {
errno = rb_w32_map_errno(ret);
FreeLibrary(h);
rb_sys_fail("GetAdaptersAddresses");
}
list = rb_ary_new();
for (; adapters; adapters = adapters->Next) {
ip_adapter_unicast_address_t *uni;
ip_adapter_anycast_address_t *any;
if (adapters->OperStatus != 1) /* 1 means IfOperStatusUp */
continue;
for (uni = adapters->FirstUnicastAddress; uni; uni = uni->Next) {
#ifndef INET6 if (uni->Address.lpSockaddr->sa_family == AF_INET) #else if (IS_IP_FAMILY(uni->Address.lpSockaddr->sa_family)) #endif rb_ary_push(list, sockaddr_obj(uni->Address.lpSockaddr, uni->Address.iSockaddrLength)); } for (any = adapters->FirstAnycastAddress; any; any = any->Next) { #ifndef INET6 if (any->Address.lpSockaddr->sa_family == AF_INET) #else if (IS_IP_FAMILY(any->Address.lpSockaddr->sa_family)) #endif rb_ary_push(list, sockaddr_obj(any->Address.lpSockaddr, any->Address.iSockaddrLength)); } }
FreeLibrary(h);
return list;
#endif }
Returns local IP addresses as an array.
The array contains Addrinfo objects.
pp Socket.ip_address_list #=> [#<Addrinfo: 127.0.0.1>, #<Addrinfo: 192.168.0.128>, #<Addrinfo: ::1>, ...]
Source
static VALUE sock_initialize(int argc, VALUE *argv, VALUE sock) { VALUE domain, type, protocol; int fd; int d, t;
rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
if (NIL_P(protocol))
protocol = INT2FIX(0);
setup_domain_and_type(domain, &d, type, &t);
fd = rsock_socket(d, t, NUM2INT(protocol));
if (fd < 0) rb_sys_fail("socket(2)");
return rsock_init_sock(sock, fd);
}
Creates a new socket object.
domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol is optional and should be a protocol defined in the domain. If protocol is not given, 0 is used internally.
Socket.new(:INET, :STREAM)
Socket.new(:INET, :DGRAM)
Socket.new(:UNIX, :STREAM)
Socket.new(:UNIX, :DGRAM)
Source
static VALUE sock_s_pack_sockaddr_in(VALUE self, VALUE port, VALUE host) { struct rb_addrinfo res = rsock_addrinfo(host, port, AF_UNSPEC, 0, 0); VALUE addr = rb_str_new((char)res->ai->ai_addr, res->ai->ai_addrlen);
rb_freeaddrinfo(res);
return addr;
}
Packs port and host as an AF_INET/AF_INET6 sockaddr string.
Socket.sockaddr_in(80, "127.0.0.1")
Socket.sockaddr_in(80, "::1")
Source
static VALUE sock_s_pack_sockaddr_un(VALUE self, VALUE path) { struct sockaddr_un sockaddr; VALUE addr;
StringValue(path);
INIT_SOCKADDR_UN(&sockaddr, sizeof(struct sockaddr_un));
if (sizeof(sockaddr.sun_path) < (size_t)RSTRING_LEN(path)) {
rb_raise(rb_eArgError, "too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
(size_t)RSTRING_LEN(path), sizeof(sockaddr.sun_path));
}
memcpy(sockaddr.sun_path, RSTRING_PTR(path), RSTRING_LEN(path));
addr = rb_str_new((char*)&sockaddr, rsock_unix_sockaddr_len(path));
return addr;
}
Packs path as an AF_UNIX sockaddr string.
Socket.sockaddr_un("/tmp/sock")
Source
VALUE rsock_sock_s_socketpair(int argc, VALUE *argv, VALUE klass) { VALUE domain, type, protocol; int d, t, p, sp[2]; int ret; VALUE s1, s2, r;
rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
if (NIL_P(protocol))
protocol = INT2FIX(0);
setup_domain_and_type(domain, &d, type, &t);
p = NUM2INT(protocol);
ret = rsock_socketpair(d, t, p, sp);
if (ret < 0) {
rb_sys_fail("socketpair(2)");
}
s1 = rsock_init_sock(rb_obj_alloc(klass), sp[0]);
s2 = rsock_init_sock(rb_obj_alloc(klass), sp[1]);
r = rb_assoc_new(s1, s2);
if (rb_block_given_p()) {
return rb_ensure(pair_yield, r, io_close, s1);
}
return r;
}
Creates a pair of sockets connected each other.
domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol should be a protocol defined in the domain, defaults to 0 for the domain.
s1, s2 = Socket.pair(:UNIX, :STREAM, 0) s1.send "a", 0 s1.send "b", 0 s1.close p s2.recv(10) p s2.recv(10) p s2.recv(10)
s1, s2 = Socket.pair(:UNIX, :DGRAM, 0) s1.send "a", 0 s1.send "b", 0 p s2.recv(10) p s2.recv(10)
Source
static VALUE sock_s_pack_sockaddr_in(VALUE self, VALUE port, VALUE host) { struct rb_addrinfo res = rsock_addrinfo(host, port, AF_UNSPEC, 0, 0); VALUE addr = rb_str_new((char)res->ai->ai_addr, res->ai->ai_addrlen);
rb_freeaddrinfo(res);
return addr;
}
Packs port and host as an AF_INET/AF_INET6 sockaddr string.
Socket.sockaddr_in(80, "127.0.0.1")
Socket.sockaddr_in(80, "::1")
Source
static VALUE sock_s_pack_sockaddr_un(VALUE self, VALUE path) { struct sockaddr_un sockaddr; VALUE addr;
StringValue(path);
INIT_SOCKADDR_UN(&sockaddr, sizeof(struct sockaddr_un));
if (sizeof(sockaddr.sun_path) < (size_t)RSTRING_LEN(path)) {
rb_raise(rb_eArgError, "too long unix socket path (%"PRIuSIZE" bytes given but %"PRIuSIZE" bytes max)",
(size_t)RSTRING_LEN(path), sizeof(sockaddr.sun_path));
}
memcpy(sockaddr.sun_path, RSTRING_PTR(path), RSTRING_LEN(path));
addr = rb_str_new((char*)&sockaddr, rsock_unix_sockaddr_len(path));
return addr;
}
Packs path as an AF_UNIX sockaddr string.
Socket.sockaddr_un("/tmp/sock")
Source
VALUE rsock_sock_s_socketpair(int argc, VALUE *argv, VALUE klass) { VALUE domain, type, protocol; int d, t, p, sp[2]; int ret; VALUE s1, s2, r;
rb_scan_args(argc, argv, "21", &domain, &type, &protocol);
if (NIL_P(protocol))
protocol = INT2FIX(0);
setup_domain_and_type(domain, &d, type, &t);
p = NUM2INT(protocol);
ret = rsock_socketpair(d, t, p, sp);
if (ret < 0) {
rb_sys_fail("socketpair(2)");
}
s1 = rsock_init_sock(rb_obj_alloc(klass), sp[0]);
s2 = rsock_init_sock(rb_obj_alloc(klass), sp[1]);
r = rb_assoc_new(s1, s2);
if (rb_block_given_p()) {
return rb_ensure(pair_yield, r, io_close, s1);
}
return r;
}
Creates a pair of sockets connected each other.
domain should be a communications domain such as: :INET, :INET6, :UNIX, etc.
socktype should be a socket type such as: :STREAM, :DGRAM, :RAW, etc.
protocol should be a protocol defined in the domain, defaults to 0 for the domain.
s1, s2 = Socket.pair(:UNIX, :STREAM, 0) s1.send "a", 0 s1.send "b", 0 s1.close p s2.recv(10) p s2.recv(10) p s2.recv(10)
s1, s2 = Socket.pair(:UNIX, :DGRAM, 0) s1.send "a", 0 s1.send "b", 0 p s2.recv(10) p s2.recv(10)
Source
def self.tcp(host, port, local_host = nil, local_port = nil, connect_timeout: nil, resolv_timeout: nil, open_timeout: nil, fast_fallback: tcp_fast_fallback, &)
if open_timeout && (connect_timeout || resolv_timeout) raise ArgumentError, "Cannot specify open_timeout along with connect_timeout or resolv_timeout" end
sock = if fast_fallback && !(host && ip_address?(host)) tcp_with_fast_fallback(host, port, local_host, local_port, connect_timeout:, resolv_timeout:, open_timeout:) else tcp_without_fast_fallback(host, port, local_host, local_port, connect_timeout:, resolv_timeout:, open_timeout:) end
if block_given? begin yield sock ensure sock.close end else sock end end
creates a new socket object connected to host:port using TCP/IP.
Starting from Ruby 3.4, this method operates according to the Happy Eyeballs Version 2 (RFC 8305) algorithm by default.
For details on Happy Eyeballs Version 2, see Socket.tcp_fast_fallback=.
To make it behave the same as in Ruby 3.3 and earlier, explicitly specify the option fast_fallback:false. Or, setting Socket.tcp_fast_fallback=false will disable Happy Eyeballs Version 2 not only for this method but for all Socket globally.
If local_host:local_port is given, the socket is bound to it.
The optional last argument opts is options represented by a hash. opts may have following options:
:resolv_timeout
Specifies the timeout in seconds from when the hostname resolution starts.
:connect_timeout
This method sequentially attempts connecting to all candidate destination addresses.
The connect_timeout
specifies the timeout in seconds from the start of the connection attempt to the last candidate.
By default, all connection attempts continue until the timeout occurs.
When fast_fallback:false
is explicitly specified,
a timeout is set for each connection attempt and any connection attempt that exceeds its timeout will be canceled.
:open_timeout
Specifies the timeout in seconds from the start of the method execution.
If this timeout is reached while there are still addresses that have not yet been attempted for connection, no further attempts will be made.
:fast_fallback
Enables the Happy Eyeballs Version 2 algorithm (enabled by default).
If a block is given, the block is called with the socket. The value of the block is returned. The socket is closed when this method returns.
If no block is given, the socket is returned.
Socket.tcp("www.ruby-lang.org", 80) {|sock| sock.print "GET / HTTP/1.0\r\nHost: www.ruby-lang.org\r\n\r\n" sock.close_write puts sock.read }
Source
VALUE socket_s_tcp_fast_fallback(VALUE self) { return rb_ivar_get(rb_cSocket, tcp_fast_fallback); }
Returns whether Happy Eyeballs Version 2 (RFC 8305), which is provided starting from Ruby 3.4 when using TCPSocket.new and Socket.tcp, is enabled or disabled.
If true, it is enabled for TCPSocket.new and Socket.tcp. (Note: Happy Eyeballs Version 2 is not provided when using TCPSocket.new on Windows.)
If false, Happy Eyeballs Version 2 is disabled.
For details on Happy Eyeballs Version 2, see Socket.tcp_fast_fallback=.
Source
VALUE socket_s_tcp_fast_fallback_set(VALUE self, VALUE value) { rb_ivar_set(rb_cSocket, tcp_fast_fallback, value); return value; }
Enable or disable Happy Eyeballs Version 2 (RFC 8305) globally, which is provided starting from Ruby 3.4 when using TCPSocket.new and Socket.tcp.
When set to true, the feature is enabled for both ‘TCPSocket.new` and `Socket.tcp`. (Note: This feature is not available when using TCPSocket.new on Windows.)
When set to false, the behavior reverts to that of Ruby 3.3 or earlier.
The default value is true if no value is explicitly set by calling this method. However, when the environment variable RUBY_TCP_NO_FAST_FALLBACK=1 is set, the default is false.
To control the setting on a per-method basis, use the fast_fallback keyword argument for each method.
Happy Eyeballs Version 2¶ ↑
Happy Eyeballs Version 2 (RFC 8305) is an algorithm designed to improve client socket connectivity.
It aims for more reliable and efficient connections by performing hostname resolution and connection attempts in parallel, instead of serially.
Starting from Ruby 3.4, this method operates as follows with this algorithm:
- Start resolving both IPv6 and IPv4 addresses concurrently.
- Start connecting to the one of the addresses that are obtained first.
If IPv4 addresses are obtained first, the method waits 50 ms for IPv6 name resolution to prioritize IPv6 connections. - After starting a connection attempt, wait 250 ms for the connection to be established.
If no connection is established within this time, a new connection is started every 250 ms
until a connection is established or there are no more candidate addresses.
(Although RFC 8305 strictly specifies sorting addresses,
this method only alternates between IPv6 / IPv4 addresses due to the performance concerns) - Once a connection is established, all remaining connection attempts are canceled.
Source
def self.tcp_server_loop(host=nil, port, &b) tcp_server_sockets(host, port) {|sockets| accept_loop(sockets, &b) } end
creates a TCP/IP server on port and calls the block for each connection accepted. The block is called with a socket and a client_address as an Addrinfo object.
If host is specified, it is used with port to determine the server addresses.
The socket is not closed when the block returns. So application should close it explicitly.
This method calls the block sequentially. It means that the next connection is not accepted until the block returns. So concurrent mechanism, thread for example, should be used to service multiple clients at a time.
Note that Addrinfo.getaddrinfo is used to determine the server socket addresses. When Addrinfo.getaddrinfo returns two or more addresses, IPv4 and IPv6 address for example, all of them are used. Socket.tcp_server_loop succeeds if one socket can be used at least.
Socket.tcp_server_loop(16807) {|sock, client_addrinfo| begin IO.copy_stream(sock, sock) ensure sock.close end }
Socket.tcp_server_loop(16807) {|sock, client_addrinfo| Thread.new { begin IO.copy_stream(sock, sock) ensure sock.close end } }
Source
def self.tcp_server_sockets(host=nil, port) if port == 0 sockets = tcp_server_sockets_port0(host) else last_error = nil sockets = [] begin Addrinfo.foreach(host, port, nil, :STREAM, nil, Socket::AI_PASSIVE) {|ai| begin s = ai.listen rescue SystemCallError last_error = $! next end sockets << s } if sockets.empty? raise last_error end rescue Exception sockets.each(&:close) raise end end if block_given? begin yield sockets ensure sockets.each(&:close) end else sockets end end
creates TCP/IP server sockets for host and port. host is optional.
If no block given, it returns an array of listening sockets.
If a block is given, the block is called with the sockets. The value of the block is returned. The socket is closed when this method returns.
If port is 0, actual port number is chosen dynamically. However all sockets in the result has same port number.
sockets = Socket.tcp_server_sockets(1296) p sockets
sockets.each {|s| p s.local_address }
sockets = Socket.tcp_server_sockets(0) sockets.each {|s| p s.local_address }
Socket.tcp_server_sockets(0) {|sockets| p sockets }
Source
def self.tcp_with_fast_fallback(host, port, local_host = nil, local_port = nil, connect_timeout: nil, resolv_timeout: nil, open_timeout: nil) if local_host || local_port local_addrinfos = Addrinfo.getaddrinfo(local_host, local_port, nil, :STREAM, timeout: resolv_timeout) resolving_family_names = local_addrinfos.map { |lai| ADDRESS_FAMILIES.key(lai.afamily) }.uniq else local_addrinfos = [] resolving_family_names = ADDRESS_FAMILIES.keys end
hostname_resolution_threads = [] resolution_store = HostnameResolutionStore.new(resolving_family_names) connecting_sockets = {} is_windows_environment ||= (RUBY_PLATFORM =~ /mswin|mingw|cygwin/)
now = current_clock_time resolution_delay_expires_at = nil connection_attempt_delay_expires_at = nil user_specified_connect_timeout_at = nil user_specified_open_timeout_at = open_timeout ? now + open_timeout : nil last_error = nil last_error_from_thread = false
if resolving_family_names.size == 1 family_name = resolving_family_names.first addrinfos = Addrinfo.getaddrinfo(host, port, family_name, :STREAM, timeout: resolv_timeout) resolution_store.add_resolved(family_name, addrinfos) hostname_resolution_result = nil hostname_resolution_notifier = nil user_specified_resolv_timeout_at = nil else hostname_resolution_result = HostnameResolutionResult.new(resolving_family_names.size) hostname_resolution_notifier = hostname_resolution_result.notifier
hostname_resolution_threads.concat(
resolving_family_names.map { |family|
thread_args = [family, host, port, hostname_resolution_result]
thread = Thread.new(*thread_args) { |*thread_args| resolve_hostname(*thread_args) }
Thread.pass
thread
}
)
user_specified_resolv_timeout_at = resolv_timeout ? now + resolv_timeout : Float::INFINITY
end
loop do if resolution_store.any_addrinfos? && !resolution_delay_expires_at && !connection_attempt_delay_expires_at while (addrinfo = resolution_store.get_addrinfo) if local_addrinfos.any? local_addrinfo = local_addrinfos.find { |lai| lai.afamily == addrinfo.afamily }
if local_addrinfo.nil?
if resolution_store.any_addrinfos?
next
elsif connecting_sockets.any? || resolution_store.any_unresolved_family?
break
else
raise SocketError.new 'no appropriate local address'
end
end
end
begin
if resolution_store.any_addrinfos? ||
connecting_sockets.any? ||
resolution_store.any_unresolved_family?
socket = Socket.new(addrinfo.pfamily, addrinfo.socktype, addrinfo.protocol)
socket.bind(local_addrinfo) if local_addrinfo
result = socket.connect_nonblock(addrinfo, exception: false)
else
result = socket = local_addrinfo ?
addrinfo.connect_from(local_addrinfo, timeout: connect_timeout) :
addrinfo.connect(timeout: connect_timeout)
end
if result == :wait_writable
connection_attempt_delay_expires_at = now + CONNECTION_ATTEMPT_DELAY
if resolution_store.empty_addrinfos?
user_specified_connect_timeout_at = connect_timeout ? now + connect_timeout : Float::INFINITY
end
connecting_sockets[socket] = addrinfo
break
else
return socket
end
rescue SystemCallError => e
socket&.close
last_error = e
if resolution_store.any_addrinfos?
next
elsif connecting_sockets.any? || resolution_store.any_unresolved_family?
break
else
raise last_error
end
end
end
end
ends_at =
if resolution_store.any_addrinfos?
[(resolution_delay_expires_at || connection_attempt_delay_expires_at),
user_specified_open_timeout_at].compact.min
elsif user_specified_open_timeout_at
user_specified_open_timeout_at
else
[user_specified_resolv_timeout_at, user_specified_connect_timeout_at].compact.max
end
hostname_resolved, writable_sockets, except_sockets = IO.select(
hostname_resolution_notifier,
connecting_sockets.keys,
is_windows_environment ? connecting_sockets.keys : nil,
second_to_timeout(current_clock_time, ends_at),
)
now = current_clock_time
resolution_delay_expires_at = nil if expired?(now, resolution_delay_expires_at)
connection_attempt_delay_expires_at = nil if expired?(now, connection_attempt_delay_expires_at)
if writable_sockets&.any?
while (writable_socket = writable_sockets.pop)
is_connected = is_windows_environment || (
sockopt = writable_socket.getsockopt(Socket::SOL_SOCKET, Socket::SO_ERROR)
sockopt.int.zero?
)
if is_connected
connecting_sockets.delete writable_socket
return writable_socket
else
failed_ai = connecting_sockets.delete writable_socket
writable_socket.close
ip_address = failed_ai.ipv6? ? "[#{failed_ai.ip_address}]" : failed_ai.ip_address
last_error = SystemCallError.new("connect(2) for #{ip_address}:#{failed_ai.ip_port}", sockopt.int)
if writable_sockets.any? || connecting_sockets.any?
elsif resolution_store.any_addrinfos? || resolution_store.any_unresolved_family?
connection_attempt_delay_expires_at = nil
user_specified_connect_timeout_at = nil
else
raise last_error
end
end
end
end
if except_sockets&.any?
except_sockets.each do |except_socket|
failed_ai = connecting_sockets.delete except_socket
sockopt = except_socket.getsockopt(Socket::SOL_SOCKET, Socket::SO_ERROR)
except_socket.close
ip_address = failed_ai.ipv6? ? "[#{failed_ai.ip_address}]" : failed_ai.ip_address
last_error = SystemCallError.new("connect(2) for #{ip_address}:#{failed_ai.ip_port}", sockopt.int)
if except_sockets.any? || connecting_sockets.any?
elsif resolution_store.any_addrinfos? || resolution_store.any_unresolved_family?
connection_attempt_delay_expires_at = nil
user_specified_connect_timeout_at = nil
else
raise last_error
end
end
end
if hostname_resolved&.any?
while (family_and_result = hostname_resolution_result.get)
family_name, result = family_and_result
if result.is_a? Exception
resolution_store.add_error(family_name, result)
unless (Socket.const_defined?(:EAI_ADDRFAMILY)) &&
(result.is_a?(Socket::ResolutionError)) &&
(result.error_code == Socket::EAI_ADDRFAMILY)
other = family_name == :ipv6 ? :ipv4 : :ipv6
if !resolution_store.resolved?(other) || !resolution_store.resolved_successfully?(other)
last_error = result
last_error_from_thread = true
end
end
else
resolution_store.add_resolved(family_name, result)
end
end
if resolution_store.resolved?(:ipv4)
if resolution_store.resolved?(:ipv6)
hostname_resolution_notifier = nil
resolution_delay_expires_at = nil
user_specified_resolv_timeout_at = nil
elsif resolution_store.resolved_successfully?(:ipv4)
resolution_delay_expires_at = now + RESOLUTION_DELAY
end
end
end
raise(Errno::ETIMEDOUT, 'user specified timeout') if expired?(now, user_specified_open_timeout_at)
if resolution_store.empty_addrinfos?
if connecting_sockets.empty? && resolution_store.resolved_all_families?
if last_error_from_thread
raise last_error.class, last_error.message, cause: last_error
else
raise last_error
end
end
if (expired?(now, user_specified_resolv_timeout_at) || resolution_store.resolved_all_families?) &&
(expired?(now, user_specified_connect_timeout_at) || connecting_sockets.empty?)
raise Errno::ETIMEDOUT, 'user specified timeout'
end
end
end ensure hostname_resolution_threads.each do |thread| thread.exit end
hostname_resolution_result&.close
connecting_sockets.each_key do |connecting_socket| connecting_socket.close end end
Source
def self.udp_server_loop(host=nil, port, &b) udp_server_sockets(host, port) {|sockets| udp_server_loop_on(sockets, &b) } end
creates a UDP/IP server on port and calls the block for each message arrived. The block is called with the message and its source information.
This method allocates sockets internally using port. If host is specified, it is used conjunction with port to determine the server addresses.
The msg is a string.
The msg_src is a Socket::UDPSource object. It is used for reply.
Socket.udp_server_loop(9261) {|msg, msg_src| msg_src.reply msg }
Source
def self.udp_server_loop_on(sockets, &b) loop { readable, _, _ = IO.select(sockets) udp_server_recv(readable, &b) } end
Run UDP/IP server loop on the given sockets.
The return value of Socket.udp_server_sockets is appropriate for the argument.
It calls the block for each message received.
Source
def self.udp_server_recv(sockets) sockets.each {|r| msg, sender_addrinfo, _, *controls = r.recvmsg_nonblock(exception: false) next if msg == :wait_readable ai = r.local_address if ai.ipv6? and pktinfo = controls.find {|c| c.cmsg_is?(:IPV6, :PKTINFO) } ai = Addrinfo.udp(pktinfo.ipv6_pktinfo_addr.ip_address, ai.ip_port) yield msg, UDPSource.new(sender_addrinfo, ai) {|reply_msg| r.sendmsg reply_msg, 0, sender_addrinfo, pktinfo } else yield msg, UDPSource.new(sender_addrinfo, ai) {|reply_msg| r.send reply_msg, 0, sender_addrinfo } end } end
Receive UDP/IP packets from the given sockets. For each packet received, the block is called.
The block receives msg and msg_src. msg is a string which is the payload of the received packet. msg_src is a Socket::UDPSource object which is used for reply.
Socket.udp_server_loop can be implemented using this method as follows.
udp_server_sockets(host, port) {|sockets| loop { readable, _, _ = IO.select(sockets) udp_server_recv(readable) {|msg, msg_src| ... } } }
Source
def self.udp_server_sockets(host=nil, port) last_error = nil sockets = []
ipv6_recvpktinfo = nil if defined? Socket::AncillaryData if defined? Socket::IPV6_RECVPKTINFO ipv6_recvpktinfo = Socket::IPV6_RECVPKTINFO elsif defined? Socket::IPV6_PKTINFO ipv6_recvpktinfo = Socket::IPV6_PKTINFO end end
local_addrs = Socket.ip_address_list
ip_list = [] Addrinfo.foreach(host, port, nil, :DGRAM, nil, Socket::AI_PASSIVE) {|ai| if ai.ipv4? && ai.ip_address == "0.0.0.0" local_addrs.each {|a| next unless a.ipv4? ip_list << Addrinfo.new(a.to_sockaddr, :INET, :DGRAM, 0); } elsif ai.ipv6? && ai.ip_address == "::" && !ipv6_recvpktinfo local_addrs.each {|a| next unless a.ipv6? ip_list << Addrinfo.new(a.to_sockaddr, :INET6, :DGRAM, 0); } else ip_list << ai end } ip_list.uniq!(&:to_sockaddr)
if port == 0 sockets = ip_sockets_port0(ip_list, false) else ip_list.each {|ip| ai = Addrinfo.udp(ip.ip_address, port) begin s = ai.bind rescue SystemCallError last_error = $! next end sockets << s } if sockets.empty? raise last_error end end
sockets.each {|s| ai = s.local_address if ipv6_recvpktinfo && ai.ipv6? && ai.ip_address == "::" s.setsockopt(:IPV6, ipv6_recvpktinfo, 1) end }
if block_given? begin yield sockets ensure sockets.each(&:close) if sockets end else sockets end end
Creates UDP/IP sockets for a UDP server.
If no block given, it returns an array of sockets.
If a block is given, the block is called with the sockets. The value of the block is returned. The sockets are closed when this method returns.
If port is zero, some port is chosen. But the chosen port is used for the all sockets.
Socket.udp_server_sockets(0) {|sockets|
p sockets.first.local_address.ip_port
Socket.udp_server_loop_on(sockets) {|msg, msg_src|
msg_src.reply msg
}
}
Source
def self.unix(path) addr = Addrinfo.unix(path) sock = addr.connect if block_given? begin yield sock ensure sock.close end else sock end end
creates a new socket connected to path using UNIX socket socket.
If a block is given, the block is called with the socket. The value of the block is returned. The socket is closed when this method returns.
If no block is given, the socket is returned.
Socket.unix("/tmp/sock") {|sock| t = Thread.new { IO.copy_stream(sock, STDOUT) } IO.copy_stream(STDIN, sock) t.join }
Source
def self.unix_server_loop(path, &b) unix_server_socket(path) {|serv| accept_loop(serv, &b) } end
creates a UNIX socket server on path. It calls the block for each socket accepted.
If host is specified, it is used with port to determine the server ports.
The socket is not closed when the block returns. So application should close it.
This method deletes the socket file pointed by path at first if the file is a socket file and it is owned by the user of the application. This is safe only if the directory of path is not changed by a malicious user. So don’t use /tmp/malicious-users-directory/socket. Note that /tmp/socket and /tmp/your-private-directory/socket is safe assuming that /tmp has sticky bit.
Socket.unix_server_loop("/tmp/sock") {|sock, client_addrinfo| begin IO.copy_stream(sock, sock) ensure sock.close end }
Source
def self.unix_server_socket(path) unless unix_socket_abstract_name?(path) begin st = File.lstat(path) rescue Errno::ENOENT end if st&.socket? && st.owned? File.unlink path end end s = Addrinfo.unix(path).listen if block_given? begin yield s ensure s.close unless unix_socket_abstract_name?(path) File.unlink path end end else s end end
creates a UNIX server socket on path
If no block given, it returns a listening socket.
If a block is given, it is called with the socket and the block value is returned. When the block exits, the socket is closed and the socket file is removed.
socket = Socket.unix_server_socket("/tmp/s")
p socket
p socket.local_address
Socket.unix_server_socket("/tmp/sock") {|s|
p s
p s.local_address
}
Source
static VALUE sock_s_unpack_sockaddr_in(VALUE self, VALUE addr) { struct sockaddr_in * sockaddr; VALUE host;
sockaddr = (struct sockaddr_in*)SockAddrStringValuePtr(addr);
if (RSTRING_LEN(addr) <
(char*)&((struct sockaddr *)sockaddr)->sa_family +
sizeof(((struct sockaddr *)sockaddr)->sa_family) -
(char*)sockaddr)
rb_raise(rb_eArgError, "too short sockaddr");
if (((struct sockaddr *)sockaddr)->sa_family != AF_INET
#ifdef INET6 && ((struct sockaddr )sockaddr)->sa_family != AF_INET6 #endif ) { #ifdef INET6 rb_raise(rb_eArgError, "not an AF_INET/AF_INET6 sockaddr"); #else rb_raise(rb_eArgError, "not an AF_INET sockaddr"); #endif } host = rsock_make_ipaddr((struct sockaddr)sockaddr, RSTRING_SOCKLEN(addr)); return rb_assoc_new(INT2NUM(ntohs(sockaddr->sin_port)), host); }
Unpacks sockaddr into port and ip_address.
sockaddr should be a string or an addrinfo for AF_INET/AF_INET6.
sockaddr = Socket.sockaddr_in(80, "127.0.0.1") p sockaddr p Socket.unpack_sockaddr_in(sockaddr)
Source
static VALUE sock_s_unpack_sockaddr_un(VALUE self, VALUE addr) { struct sockaddr_un * sockaddr; VALUE path;
sockaddr = (struct sockaddr_un*)SockAddrStringValuePtr(addr);
if (RSTRING_LEN(addr) <
(char*)&((struct sockaddr *)sockaddr)->sa_family +
sizeof(((struct sockaddr *)sockaddr)->sa_family) -
(char*)sockaddr)
rb_raise(rb_eArgError, "too short sockaddr");
if (((struct sockaddr *)sockaddr)->sa_family != AF_UNIX) {
rb_raise(rb_eArgError, "not an AF_UNIX sockaddr");
}
if (sizeof(struct sockaddr_un) < (size_t)RSTRING_LEN(addr)) {
rb_raise(rb_eTypeError, "too long sockaddr_un - %ld longer than %d",
RSTRING_LEN(addr), (int)sizeof(struct sockaddr_un));
}
path = rsock_unixpath_str(sockaddr, RSTRING_SOCKLEN(addr));
return path;
}
Unpacks sockaddr into path.
sockaddr should be a string or an addrinfo for AF_UNIX.
sockaddr = Socket.sockaddr_un("/tmp/sock") p Socket.unpack_sockaddr_un(sockaddr)
Private Class Methods
Source
def self.current_clock_time Process.clock_gettime(Process::CLOCK_MONOTONIC) end
Source
def self.expired?(started_at, ends_at) second_to_timeout(started_at, ends_at)&.zero? end
Source
def self.ip_address?(hostname) hostname.match?(IPV6_ADDRESS_FORMAT) || hostname.match?(/\A([0-9]{1,3}.){3}[0-9]{1,3}\z/) end
Source
def self.resolve_hostname(family, host, port, hostname_resolution_result) begin resolved_addrinfos = Addrinfo.getaddrinfo(host, port, ADDRESS_FAMILIES[family], :STREAM) hostname_resolution_result.add(family, resolved_addrinfos) rescue => e hostname_resolution_result.add(family, e) end end
Source
def self.second_to_timeout(started_at, ends_at) return nil if ends_at == Float::INFINITY || ends_at.nil?
remaining = (ends_at - started_at) remaining.negative? ? 0 : remaining end
Source
def self.tcp_without_fast_fallback(host, port, local_host, local_port, connect_timeout:, resolv_timeout:, open_timeout:) last_error = nil ret = nil
local_addr_list = nil if local_host != nil || local_port != nil local_addr_list = Addrinfo.getaddrinfo(local_host, local_port, nil, :STREAM, nil) end
timeout = open_timeout ? open_timeout : resolv_timeout starts_at = current_clock_time
Addrinfo.foreach(host, port, nil, :STREAM, timeout:) {|ai| if local_addr_list local_addr = local_addr_list.find {|local_ai| local_ai.afamily == ai.afamily } next unless local_addr else local_addr = nil end begin timeout = open_timeout ? open_timeout - (current_clock_time - starts_at) : connect_timeout sock = local_addr ? ai.connect_from(local_addr, timeout:) : ai.connect(timeout:) rescue SystemCallError last_error = $! next end ret = sock break } unless ret if last_error raise last_error else raise SocketError, "no appropriate local address" end end
ret end
Source
def unix_socket_abstract_name?(path) /linux/ =~ RUBY_PLATFORM && /\A(\0|\z)/ =~ path end
Public Instance Methods
Source
static VALUE sock_accept(VALUE server) { union_sockaddr buffer; socklen_t length = (socklen_t)sizeof(buffer);
VALUE peer = rsock_s_accept(rb_cSocket, server, &buffer.addr, &length);
return rb_assoc_new(peer, rsock_io_socket_addrinfo(peer, &buffer.addr, length));
}
Accepts a next connection. Returns a new Socket object and Addrinfo object.
serv = Socket.new(:INET, :STREAM, 0) serv.listen(5) c = Socket.new(:INET, :STREAM, 0) c.connect(serv.connect_address) p serv.accept
Source
def accept_nonblock(exception: true) __accept_nonblock(exception) end
Accepts an incoming connection using accept(2) after O_NONBLOCK is set for the underlying file descriptor. It returns an array containing the accepted socket for the incoming connection, client_socket, and an Addrinfo, client_addrinfo.
Example¶ ↑
require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, 'localhost') socket.bind(sockaddr) socket.listen(5) begin client_socket, client_addrinfo = socket.accept_nonblock rescue IO::WaitReadable, Errno::EINTR IO.select([socket]) retry end puts "The client said, '#{client_socket.readline.chomp}'" client_socket.puts "Hello from script one!" socket.close
require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, 'localhost') socket.connect(sockaddr) socket.puts "Hello from script 2." puts "The server said, '#{socket.readline.chomp}'" socket.close
Refer to Socket#accept for the exceptions that may be thrown if the call to accept_nonblock fails.
Socket#accept_nonblock may raise any error corresponding to accept(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK, Errno::EAGAIN, Errno::ECONNABORTED or Errno::EPROTO, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying accept_nonblock.
By specifying a keyword argument exception to false
, you can indicate that accept_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable
instead.
See¶ ↑
Source
static VALUE sock_bind(VALUE sock, VALUE addr) { VALUE rai; rb_io_t *fptr;
SockAddrStringValueWithAddrinfo(addr, rai);
GetOpenFile(sock, fptr);
if (bind(fptr->fd, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_SOCKLEN(addr)) < 0)
rsock_sys_fail_raddrinfo_or_sockaddr("bind(2)", addr, rai);
return INT2FIX(0);
}
Binds to the given local address.
Parameter¶ ↑
local_sockaddr
- thestruct
sockaddr contained in a string or an Addrinfo object
Example¶ ↑
require 'socket'
socket = Socket.new(:INET, :STREAM, 0) socket.bind(Addrinfo.tcp("127.0.0.1", 2222)) p socket.local_address
include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr )
Unix-based Exceptions¶ ↑
On unix-based based systems the following system exceptions may be raised if the call to bind fails:
- Errno::EACCES - the specified sockaddr is protected and the current user does not have permission to bind to it
- Errno::EADDRINUSE - the specified sockaddr is already in use
- Errno::EADDRNOTAVAIL - the specified sockaddr is not available from the local machine
- Errno::EAFNOSUPPORT - the specified sockaddr is not a valid address for the family of the calling
socket
- Errno::EBADF - the sockaddr specified is not a valid file descriptor
- Errno::EFAULT - the sockaddr argument cannot be accessed
- Errno::EINVAL - the
socket
is already bound to an address, and the protocol does not support binding to the new sockaddr or thesocket
has been shut down. - Errno::EINVAL - the address length is not a valid length for the address family
- Errno::ENAMETOOLONG - the pathname resolved had a length which exceeded PATH_MAX
- Errno::ENOBUFS - no buffer space is available
- Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation
- Errno::ENOTSOCK - the
socket
does not refer to a socket - Errno::EOPNOTSUPP - the socket type of the
socket
does not support binding to an address
On unix-based based systems if the address family of the calling socket
is Socket::AF_UNIX the follow exceptions may be raised if the call to bind fails:
- Errno::EACCES - search permission is denied for a component of the prefix path or write access to the
socket
is denied - Errno::EDESTADDRREQ - the sockaddr argument is a null pointer
- Errno::EISDIR - same as Errno::EDESTADDRREQ
- Errno::EIO - an i/o error occurred
- Errno::ELOOP - too many symbolic links were encountered in translating the pathname in sockaddr
- Errno::ENAMETOOLLONG - a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters
- Errno::ENOENT - a component of the pathname does not name an existing file or the pathname is an empty string
- Errno::ENOTDIR - a component of the path prefix of the pathname in sockaddr is not a directory
- Errno::EROFS - the name would reside on a read only filesystem
Windows Exceptions¶ ↑
On Windows systems the following system exceptions may be raised if the call to bind fails:
- Errno::ENETDOWN– the network is down
- Errno::EACCES - the attempt to connect the datagram socket to the broadcast address failed
- Errno::EADDRINUSE - the socket’s local address is already in use
- Errno::EADDRNOTAVAIL - the specified address is not a valid address for this computer
- Errno::EFAULT - the socket’s internal address or address length parameter is too small or is not a valid part of the user space addressed
- Errno::EINVAL - the
socket
is already bound to an address - Errno::ENOBUFS - no buffer space is available
- Errno::ENOTSOCK - the
socket
argument does not refer to a socket
See¶ ↑
- bind manual pages on unix-based systems
- bind function in Microsoft’s Winsock functions reference
Source
static VALUE sock_connect(VALUE self, VALUE addr) { VALUE rai;
SockAddrStringValueWithAddrinfo(addr, rai);
addr = rb_str_new4(addr);
int result = rsock_connect(self, (struct sockaddr*)RSTRING_PTR(addr), RSTRING_SOCKLEN(addr), 0, RUBY_IO_TIMEOUT_DEFAULT);
if (result < 0) {
rsock_sys_fail_raddrinfo_or_sockaddr("connect(2)", addr, rai);
}
return INT2FIX(result);
}
Requests a connection to be made on the given remote_sockaddr
. Returns 0 if successful, otherwise an exception is raised.
Parameter¶ ↑
remote_sockaddr
- thestruct
sockaddr contained in a string or Addrinfo object
Example:¶ ↑
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 80, 'www.google.com' ) socket.connect( sockaddr ) socket.write( "GET / HTTP/1.0\r\n\r\n" ) results = socket.read
Unix-based Exceptions¶ ↑
On unix-based systems the following system exceptions may be raised if the call to connect fails:
- Errno::EACCES - search permission is denied for a component of the prefix path or write access to the
socket
is denied - Errno::EADDRINUSE - the sockaddr is already in use
- Errno::EADDRNOTAVAIL - the specified sockaddr is not available from the local machine
- Errno::EAFNOSUPPORT - the specified sockaddr is not a valid address for the address family of the specified
socket
- Errno::EALREADY - a connection is already in progress for the specified socket
- Errno::EBADF - the
socket
is not a valid file descriptor - Errno::ECONNREFUSED - the target sockaddr was not listening for connections refused the connection request
- Errno::ECONNRESET - the remote host reset the connection request
- Errno::EFAULT - the sockaddr cannot be accessed
- Errno::EHOSTUNREACH - the destination host cannot be reached (probably because the host is down or a remote router cannot reach it)
- Errno::EINPROGRESS - the O_NONBLOCK is set for the
socket
and the connection cannot be immediately established; the connection will be established asynchronously - Errno::EINTR - the attempt to establish the connection was interrupted by delivery of a signal that was caught; the connection will be established asynchronously
- Errno::EISCONN - the specified
socket
is already connected - Errno::EINVAL - the address length used for the sockaddr is not a valid length for the address family or there is an invalid family in sockaddr
- Errno::ENAMETOOLONG - the pathname resolved had a length which exceeded PATH_MAX
- Errno::ENETDOWN - the local interface used to reach the destination is down
- Errno::ENETUNREACH - no route to the network is present
- Errno::ENOBUFS - no buffer space is available
- Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation
- Errno::ENOTSOCK - the
socket
argument does not refer to a socket - Errno::EOPNOTSUPP - the calling
socket
is listening and cannot be connected - Errno::EPROTOTYPE - the sockaddr has a different type than the socket bound to the specified peer address
- Errno::ETIMEDOUT - the attempt to connect timed out before a connection was made.
On unix-based systems if the address family of the calling socket
is AF_UNIX the follow exceptions may be raised if the call to connect fails:
- Errno::EIO - an i/o error occurred while reading from or writing to the file system
- Errno::ELOOP - too many symbolic links were encountered in translating the pathname in sockaddr
- Errno::ENAMETOOLLONG - a component of a pathname exceeded NAME_MAX characters, or an entire pathname exceeded PATH_MAX characters
- Errno::ENOENT - a component of the pathname does not name an existing file or the pathname is an empty string
- Errno::ENOTDIR - a component of the path prefix of the pathname in sockaddr is not a directory
Windows Exceptions¶ ↑
On Windows systems the following system exceptions may be raised if the call to connect fails:
- Errno::ENETDOWN - the network is down
- Errno::EADDRINUSE - the socket’s local address is already in use
- Errno::EINTR - the socket was cancelled
- Errno::EINPROGRESS - a blocking socket is in progress or the service provider is still processing a callback function. Or a nonblocking connect call is in progress on the
socket
. - Errno::EALREADY - see Errno::EINVAL
- Errno::EADDRNOTAVAIL - the remote address is not a valid address, such as ADDR_ANY TODO check ADDRANY TO INADDR_ANY
- Errno::EAFNOSUPPORT - addresses in the specified family cannot be used with with this
socket
- Errno::ECONNREFUSED - the target sockaddr was not listening for connections refused the connection request
- Errno::EFAULT - the socket’s internal address or address length parameter is too small or is not a valid part of the user space address
- Errno::EINVAL - the
socket
is a listening socket - Errno::EISCONN - the
socket
is already connected - Errno::ENETUNREACH - the network cannot be reached from this host at this time
- Errno::EHOSTUNREACH - no route to the network is present
- Errno::ENOBUFS - no buffer space is available
- Errno::ENOTSOCK - the
socket
argument does not refer to a socket - Errno::ETIMEDOUT - the attempt to connect timed out before a connection was made.
- Errno::EWOULDBLOCK - the socket is marked as nonblocking and the connection cannot be completed immediately
- Errno::EACCES - the attempt to connect the datagram socket to the broadcast address failed
See¶ ↑
- connect manual pages on unix-based systems
- connect function in Microsoft’s Winsock functions reference
Source
def connect_nonblock(addr, exception: true) __connect_nonblock(addr, exception) end
Requests a connection to be made on the given remote_sockaddr
after O_NONBLOCK is set for the underlying file descriptor. Returns 0 if successful, otherwise an exception is raised.
Parameter¶ ↑
remote_sockaddr
- thestruct
sockaddr contained in a string or Addrinfo object
Example:¶ ↑
require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(80, 'www.google.com') begin socket.connect_nonblock(sockaddr) rescue IO::WaitWritable IO.select(nil, [socket]) begin socket.connect_nonblock(sockaddr) rescue Errno::EISCONN end end socket.write("GET / HTTP/1.0\r\n\r\n") results = socket.read
Refer to Socket#connect for the exceptions that may be thrown if the call to connect_nonblock fails.
Socket#connect_nonblock may raise any error corresponding to connect(2) failure, including Errno::EINPROGRESS.
If the exception is Errno::EINPROGRESS, it is extended by IO::WaitWritable. So IO::WaitWritable can be used to rescue the exceptions for retrying connect_nonblock.
By specifying a keyword argument exception to false
, you can indicate that connect_nonblock should not raise an IO::WaitWritable exception, but return the symbol :wait_writable
instead.
See¶ ↑
Source
def ipv6only! if defined? Socket::IPV6_V6ONLY self.setsockopt(:IPV6, :V6ONLY, 1) end end
enable the socket option IPV6_V6ONLY if IPV6_V6ONLY is available.
Source
VALUE rsock_sock_listen(VALUE sock, VALUE log) { rb_io_t *fptr; int backlog;
backlog = NUM2INT(log);
GetOpenFile(sock, fptr);
if (listen(fptr->fd, backlog) < 0)
rb_sys_fail("listen(2)");
return INT2FIX(0);
}
Listens for connections, using the specified int
as the backlog. A call to listen only applies if the socket
is of type SOCK_STREAM or SOCK_SEQPACKET.
Parameter¶ ↑
backlog
- the maximum length of the queue for pending connections.
Example 1¶ ↑
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr ) socket.listen( 5 )
Example 2 (listening on an arbitrary port, unix-based systems only):¶ ↑
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) socket.listen( 1 )
Unix-based Exceptions¶ ↑
On unix based systems the above will work because a new sockaddr
struct is created on the address ADDR_ANY, for an arbitrary port number as handed off by the kernel. It will not work on Windows, because Windows requires that the socket
is bound by calling bind before it can listen.
If the backlog amount exceeds the implementation-dependent maximum queue length, the implementation’s maximum queue length will be used.
On unix-based based systems the following system exceptions may be raised if the call to listen fails:
- Errno::EBADF - the socket argument is not a valid file descriptor
- Errno::EDESTADDRREQ - the socket is not bound to a local address, and the protocol does not support listening on an unbound socket
- Errno::EINVAL - the socket is already connected
- Errno::ENOTSOCK - the socket argument does not refer to a socket
- Errno::EOPNOTSUPP - the socket protocol does not support listen
- Errno::EACCES - the calling process does not have appropriate privileges
- Errno::EINVAL - the socket has been shut down
- Errno::ENOBUFS - insufficient resources are available in the system to complete the call
Windows Exceptions¶ ↑
On Windows systems the following system exceptions may be raised if the call to listen fails:
- Errno::ENETDOWN - the network is down
- Errno::EADDRINUSE - the socket’s local address is already in use. This usually occurs during the execution of bind but could be delayed if the call to bind was to a partially wildcard address (involving ADDR_ANY) and if a specific address needs to be committed at the time of the call to listen
- Errno::EINPROGRESS - a Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function
- Errno::EINVAL - the
socket
has not been bound with a call to bind. - Errno::EISCONN - the
socket
is already connected - Errno::EMFILE - no more socket descriptors are available
- Errno::ENOBUFS - no buffer space is available
- Errno::ENOTSOC -
socket
is not a socket - Errno::EOPNOTSUPP - the referenced
socket
is not a type that supports the listen method
See¶ ↑
- listen manual pages on unix-based systems
- listen function in Microsoft’s Winsock functions reference
Source
static VALUE sock_recvfrom(int argc, VALUE *argv, VALUE sock) { return rsock_s_recvfrom(sock, argc, argv, RECV_SOCKET); }
Receives up to maxlen bytes from socket
. flags is zero or more of the MSG_
options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.
Parameters¶ ↑
maxlen
- the maximum number of bytes to receive from the socketflags
- zero or more of theMSG_
options
Example¶ ↑
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr ) socket.listen( 5 ) client, client_addrinfo = socket.accept data = client.recvfrom( 20 )[0].chomp puts "I only received 20 bytes '#{data}'" sleep 1 socket.close
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.connect( sockaddr ) socket.puts "Watch this get cut short!" socket.close
Unix-based Exceptions¶ ↑
On unix-based based systems the following system exceptions may be raised if the call to recvfrom fails:
- Errno::EAGAIN - the
socket
file descriptor is marked as O_NONBLOCK and no data is waiting to be received; or MSG_OOB is set and no out-of-band data is available and either thesocket
file descriptor is marked as O_NONBLOCK or thesocket
does not support blocking to wait for out-of-band-data - Errno::EWOULDBLOCK - see Errno::EAGAIN
- Errno::EBADF - the
socket
is not a valid file descriptor - Errno::ECONNRESET - a connection was forcibly closed by a peer
- Errno::EFAULT - the socket’s internal buffer, address or address length cannot be accessed or written
- Errno::EINTR - a signal interrupted recvfrom before any data was available
- Errno::EINVAL - the MSG_OOB flag is set and no out-of-band data is available
- Errno::EIO - an i/o error occurred while reading from or writing to the filesystem
- Errno::ENOBUFS - insufficient resources were available in the system to perform the operation
- Errno::ENOMEM - insufficient memory was available to fulfill the request
- Errno::ENOSR - there were insufficient STREAMS resources available to complete the operation
- Errno::ENOTCONN - a receive is attempted on a connection-mode socket that is not connected
- Errno::ENOTSOCK - the
socket
does not refer to a socket - Errno::EOPNOTSUPP - the specified flags are not supported for this socket type
- Errno::ETIMEDOUT - the connection timed out during connection establishment or due to a transmission timeout on an active connection
Windows Exceptions¶ ↑
On Windows systems the following system exceptions may be raised if the call to recvfrom fails:
- Errno::ENETDOWN - the network is down
- Errno::EFAULT - the internal buffer and from parameters on
socket
are not part of the user address space, or the internal fromlen parameter is too small to accommodate the peer address - Errno::EINTR - the (blocking) call was cancelled by an internal call to the WinSock function WSACancelBlockingCall
- Errno::EINPROGRESS - a blocking Windows Sockets 1.1 call is in progress or the service provider is still processing a callback function
- Errno::EINVAL -
socket
has not been bound with a call to bind, or an unknown flag was specified, or MSG_OOB was specified for a socket with SO_OOBINLINE enabled, or (for byte stream-style sockets only) the internal len parameter onsocket
was zero or negative - Errno::EISCONN -
socket
is already connected. The call to recvfrom is not permitted with a connected socket on a socket that is connection oriented or connectionless. - Errno::ENETRESET - the connection has been broken due to the keep-alive activity detecting a failure while the operation was in progress.
- Errno::EOPNOTSUPP - MSG_OOB was specified, but
socket
is not stream-style such as type SOCK_STREAM. OOB data is not supported in the communication domain associated withsocket
, orsocket
is unidirectional and supports only send operations - Errno::ESHUTDOWN -
socket
has been shutdown. It is not possible to call recvfrom on a socket after shutdown has been invoked. - Errno::EWOULDBLOCK -
socket
is marked as nonblocking and a call to recvfrom would block. - Errno::EMSGSIZE - the message was too large to fit into the specified buffer and was truncated.
- Errno::ETIMEDOUT - the connection has been dropped, because of a network failure or because the system on the other end went down without notice
- Errno::ECONNRESET - the virtual circuit was reset by the remote side executing a hard or abortive close. The application should close the socket; it is no longer usable. On a UDP-datagram socket this error indicates a previous send operation resulted in an ICMP Port Unreachable message.
Source
def recvfrom_nonblock(len, flag = 0, str = nil, exception: true) __recvfrom_nonblock(len, flag, str, exception) end
Receives up to maxlen bytes from socket
using recvfrom(2) after O_NONBLOCK is set for the underlying file descriptor. flags is zero or more of the MSG_
options. The first element of the results, mesg, is the data received. The second element, sender_addrinfo, contains protocol-specific address information of the sender.
When recvfrom(2) returns 0, Socket#recv_nonblock returns nil. In most cases it means the connection was closed, but for UDP connections it may mean an empty packet was received, as the underlying API makes it impossible to distinguish these two cases.
Parameters¶ ↑
maxlen
- the maximum number of bytes to receive from the socketflags
- zero or more of theMSG_
optionsoutbuf
- destination String bufferopts
- keyword hash, supporting ‘exception: false`
Example¶ ↑
require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, 'localhost') socket.bind(sockaddr) socket.listen(5) client, client_addrinfo = socket.accept begin pair = client.recvfrom_nonblock(20) rescue IO::WaitReadable IO.select([client]) retry end data = pair[0].chomp puts "I only received 20 bytes '#{data}'" sleep 1 socket.close
require 'socket' include Socket::Constants socket = Socket.new(AF_INET, SOCK_STREAM, 0) sockaddr = Socket.sockaddr_in(2200, 'localhost') socket.connect(sockaddr) socket.puts "Watch this get cut short!" socket.close
Refer to Socket#recvfrom for the exceptions that may be thrown if the call to recvfrom_nonblock fails.
Socket#recvfrom_nonblock may raise any error corresponding to recvfrom(2) failure, including Errno::EWOULDBLOCK.
If the exception is Errno::EWOULDBLOCK or Errno::EAGAIN, it is extended by IO::WaitReadable. So IO::WaitReadable can be used to rescue the exceptions for retrying recvfrom_nonblock.
By specifying a keyword argument exception to false
, you can indicate that recvfrom_nonblock should not raise an IO::WaitReadable exception, but return the symbol :wait_readable
instead.
See¶ ↑
Source
static VALUE sock_sysaccept(VALUE server) { union_sockaddr buffer; socklen_t length = (socklen_t)sizeof(buffer);
VALUE peer = rsock_s_accept(0, server, &buffer.addr, &length);
return rb_assoc_new(peer, rsock_io_socket_addrinfo(peer, &buffer.addr, length));
}
Accepts an incoming connection returning an array containing the (integer) file descriptor for the incoming connection, client_socket_fd, and an Addrinfo, client_addrinfo.
Example¶ ↑
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.bind( sockaddr ) socket.listen( 5 ) client_fd, client_addrinfo = socket.sysaccept client_socket = Socket.for_fd( client_fd ) puts "The client said, '#{client_socket.readline.chomp}'" client_socket.puts "Hello from script one!" socket.close
require 'socket' include Socket::Constants socket = Socket.new( AF_INET, SOCK_STREAM, 0 ) sockaddr = Socket.pack_sockaddr_in( 2200, 'localhost' ) socket.connect( sockaddr ) socket.puts "Hello from script 2." puts "The server said, '#{socket.readline.chomp}'" socket.close
Refer to Socket#accept for the exceptions that may be thrown if the call to sysaccept fails.