scipy.special.betainc — SciPy v1.15.2 Manual (original) (raw)
scipy.special.betainc(a, b, x, out=None) = <ufunc 'betainc'>#
Regularized incomplete beta function.
Computes the regularized incomplete beta function, defined as [1]:
\[I_x(a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^x t^{a-1}(1-t)^{b-1}dt,\]
for \(0 \leq x \leq 1\).
This function is the cumulative distribution function for the beta distribution; its range is [0, 1].
Parameters:
a, barray_like
Positive, real-valued parameters
xarray_like
Real-valued such that \(0 \leq x \leq 1\), the upper limit of integration
outndarray, optional
Optional output array for the function values
Returns:
scalar or ndarray
Value of the regularized incomplete beta function
Notes
The term regularized in the name of this function refers to the scaling of the function by the gamma function terms shown in the formula. When not qualified as regularized, the name incomplete beta function often refers to just the integral expression, without the gamma terms. One can use the function beta fromscipy.special to get this “nonregularized” incomplete beta function by multiplying the result of betainc(a, b, x)
bybeta(a, b)
.
This function wraps the ibeta
routine from the Boost Math C++ library [2].
References
Examples
Let \(B(a, b)\) be the beta function.
import scipy.special as sc
The coefficient in terms of gamma is equal to\(1/B(a, b)\). Also, when \(x=1\)the integral is equal to \(B(a, b)\). Therefore, \(I_{x=1}(a, b) = 1\) for any \(a, b\).
sc.betainc(0.2, 3.5, 1.0) 1.0
It satisfies\(I_x(a, b) = x^a F(a, 1-b, a+1, x)/ (aB(a, b))\), where \(F\) is the hypergeometric function hyp2f1:
a, b, x = 1.4, 3.1, 0.5 x**a * sc.hyp2f1(a, 1 - b, a + 1, x)/(a * sc.beta(a, b)) 0.8148904036225295 sc.betainc(a, b, x) 0.8148904036225296
This functions satisfies the relationship\(I_x(a, b) = 1 - I_{1-x}(b, a)\):
sc.betainc(2.2, 3.1, 0.4) 0.49339638807619446 1 - sc.betainc(3.1, 2.2, 1 - 0.4) 0.49339638807619446