scipy.special.itj0y0 — SciPy v1.15.2 Manual (original) (raw)
scipy.special.itj0y0(x, out=None) = <ufunc 'itj0y0'>#
Integrals of Bessel functions of the first kind of order 0.
Computes the integrals
\[\begin{split}\int_0^x J_0(t) dt \\ \int_0^x Y_0(t) dt.\end{split}\]
For more on \(J_0\) and \(Y_0\) see j0 and y0.
Parameters:
xarray_like
Values at which to evaluate the integrals.
outtuple of ndarrays, optional
Optional output arrays for the function results.
Returns:
ij0scalar or ndarray
The integral of j0
iy0scalar or ndarray
The integral of y0
References
[1]
S. Zhang and J.M. Jin, “Computation of Special Functions”, Wiley 1996
Examples
Evaluate the functions at one point.
from scipy.special import itj0y0 int_j, int_y = itj0y0(1.) int_j, int_y (0.9197304100897596, -0.637069376607422)
Evaluate the functions at several points.
import numpy as np points = np.array([0., 1.5, 3.]) int_j, int_y = itj0y0(points) int_j, int_y (array([0. , 1.24144951, 1.38756725]), array([ 0. , -0.51175903, 0.19765826]))
Plot the functions from 0 to 10.
import matplotlib.pyplot as plt fig, ax = plt.subplots() x = np.linspace(0., 10., 1000) int_j, int_y = itj0y0(x) ax.plot(x, int_j, label=r"$\int_0^x J_0(t),dt$") ax.plot(x, int_y, label=r"$\int_0^x Y_0(t),dt$") ax.legend() plt.show()