scipy.special.j0 — SciPy v1.15.2 Manual (original) (raw)

scipy.special.j0(x, out=None) = <ufunc 'j0'>#

Bessel function of the first kind of order 0.

Parameters:

xarray_like

Argument (float).

outndarray, optional

Optional output array for the function values

Returns:

Jscalar or ndarray

Value of the Bessel function of the first kind of order 0 at x.

See also

jv

Bessel function of real order and complex argument.

spherical_jn

spherical Bessel functions.

Notes

The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval the following rational approximation is used:

\[J_0(x) \approx (w - r_1^2)(w - r_2^2) \frac{P_3(w)}{Q_8(w)},\]

where \(w = x^2\) and \(r_1\), \(r_2\) are the zeros of\(J_0\), and \(P_3\) and \(Q_8\) are polynomials of degrees 3 and 8, respectively.

In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7.

This function is a wrapper for the Cephes [1] routine j0. It should not be confused with the spherical Bessel functions (seespherical_jn).

References

Examples

Calculate the function at one point:

from scipy.special import j0 j0(1.) 0.7651976865579665

Calculate the function at several points:

import numpy as np j0(np.array([-2., 0., 4.])) array([ 0.22389078, 1. , -0.39714981])

Plot the function from -20 to 20.

import matplotlib.pyplot as plt fig, ax = plt.subplots() x = np.linspace(-20., 20., 1000) y = j0(x) ax.plot(x, y) plt.show()

../../_images/scipy-special-j0-1.png