scipy.stats.chi — SciPy v1.15.2 Manual (original) (raw)

scipy.stats.chi = <scipy.stats._continuous_distns.chi_gen object>[source]#

A chi continuous random variable.

As an instance of the rv_continuous class, chi object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.

Notes

The probability density function for chi is:

\[f(x, k) = \frac{1}{2^{k/2-1} \Gamma \left( k/2 \right)} x^{k-1} \exp \left( -x^2/2 \right)\]

for \(x >= 0\) and \(k > 0\) (degrees of freedom, denoted dfin the implementation). \(\Gamma\) is the gamma function (scipy.special.gamma).

Special cases of chi are:

chi takes df as a shape parameter.

The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the loc and scale parameters. Specifically, chi.pdf(x, df, loc, scale) is identically equivalent to chi.pdf(y, df) / scale withy = (x - loc) / scale. Note that shifting the location of a distribution does not make it a “noncentral” distribution; noncentral generalizations of some distributions are available in separate classes.

Examples

import numpy as np from scipy.stats import chi import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1)

Calculate the first four moments:

df = 78 mean, var, skew, kurt = chi.stats(df, moments='mvsk')

Display the probability density function (pdf):

x = np.linspace(chi.ppf(0.01, df), ... chi.ppf(0.99, df), 100) ax.plot(x, chi.pdf(x, df), ... 'r-', lw=5, alpha=0.6, label='chi pdf')

Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.

Freeze the distribution and display the frozen pdf:

rv = chi(df) ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of cdf and ppf:

vals = chi.ppf([0.001, 0.5, 0.999], df) np.allclose([0.001, 0.5, 0.999], chi.cdf(vals, df)) True

Generate random numbers:

r = chi.rvs(df, size=1000)

And compare the histogram:

ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2) ax.set_xlim([x[0], x[-1]]) ax.legend(loc='best', frameon=False) plt.show()

../../_images/scipy-stats-chi-1.png

Methods

rvs(df, loc=0, scale=1, size=1, random_state=None) Random variates.
pdf(x, df, loc=0, scale=1) Probability density function.
logpdf(x, df, loc=0, scale=1) Log of the probability density function.
cdf(x, df, loc=0, scale=1) Cumulative distribution function.
logcdf(x, df, loc=0, scale=1) Log of the cumulative distribution function.
sf(x, df, loc=0, scale=1) Survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
logsf(x, df, loc=0, scale=1) Log of the survival function.
ppf(q, df, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, df, loc=0, scale=1) Inverse survival function (inverse of sf).
moment(order, df, loc=0, scale=1) Non-central moment of the specified order.
stats(df, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(df, loc=0, scale=1) (Differential) entropy of the RV.
fit(data) Parameter estimates for generic data. See scipy.stats.rv_continuous.fit for detailed documentation of the keyword arguments.
expect(func, args=(df,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution.
median(df, loc=0, scale=1) Median of the distribution.
mean(df, loc=0, scale=1) Mean of the distribution.
var(df, loc=0, scale=1) Variance of the distribution.
std(df, loc=0, scale=1) Standard deviation of the distribution.
interval(confidence, df, loc=0, scale=1) Confidence interval with equal areas around the median.