xarray.Dataset.interpolate_na (original) (raw)
Dataset.interpolate_na(dim=None, method='linear', limit=None, use_coordinate=True, max_gap=None, **kwargs)[source]#
Fill in NaNs by interpolating according to different methods.
Parameters:
- dim (
Hashable
or None, optional) – Specifies the dimension along which to interpolate. - method (
{"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "polynomial", "barycentric", "krogh", "pchip", "spline", "akima"}
, default:"linear"
) – String indicating which method to use for interpolation:- ‘linear’: linear interpolation. Additional keyword arguments are passed to numpy.interp()
- ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘polynomial’: are passed to
scipy.interpolate.interp1d()
. Ifmethod='polynomial'
, theorder
keyword argument must also be provided. - ‘barycentric’, ‘krogh’, ‘pchip’, ‘spline’, ‘akima’: use their respective
scipy.interpolate
classes.
- use_coordinate (bool or
Hashable
, default: True) – Specifies which index to use as the x values in the interpolation formulated as y = f(x). If False, values are treated as if equally-spaced alongdim
. If True, the IndexVariable dim is used. Ifuse_coordinate
is a string, it specifies the name of a coordinate variable to use as the index. - limit (int, default: None) – Maximum number of consecutive NaNs to fill. Must be greater than 0 or None for no limit. This filling is done regardless of the size of the gap in the data. To only interpolate over gaps less than a given length, see
max_gap
. - max_gap (int, float, str, pandas.Timedelta, numpy.timedelta64, datetime.timedelta or None, default: None) – Maximum size of gap, a continuous sequence of NaNs, that will be filled. Use None for no limit. When interpolating along a datetime64 dimension and
use_coordinate=True
,max_gap
can be one of the following:- a string that is valid input for pandas.to_timedelta
- a numpy.timedelta64 object
- a pandas.Timedelta object
- a datetime.timedelta object
Otherwise,max_gap
must be an int or a float. Use ofmax_gap
with unlabeled dimensions has not been implemented yet. Gap length is defined as the difference between coordinate values at the first data point after a gap and the last value before a gap. For gaps at the beginning (end), gap length is defined as the difference between coordinate values at the first (last) valid data point and the first (last) NaN. For example, consider:
<xarray.DataArray (x: 9)>
array([nan, nan, nan, 1., nan, nan, 4., nan, nan])
Coordinates: - x (x) int64 0 1 2 3 4 5 6 7 8
The gap lengths are 3-0 = 3; 6-3 = 3; and 8-6 = 2 respectively
- **kwargs (dict, optional) – parameters passed verbatim to the underlying interpolation function
Returns:
interpolated (Dataset) – Filled in Dataset.
Warning
When passing fill_value as a keyword argument with method=”linear”, it does not usenumpy.interp
but it uses scipy.interpolate.interp1d
, which provides the fill_value parameter.
Examples
ds = xr.Dataset( ... { ... "A": ("x", [np.nan, 2, 3, np.nan, 0]), ... "B": ("x", [3, 4, np.nan, 1, 7]), ... "C": ("x", [np.nan, np.nan, np.nan, 5, 0]), ... "D": ("x", [np.nan, 3, np.nan, -1, 4]), ... }, ... coords={"x": [0, 1, 2, 3, 4]}, ... ) ds <xarray.Dataset> Size: 200B Dimensions: (x: 5) Coordinates:
- x (x) int64 40B 0 1 2 3 4 Data variables: A (x) float64 40B nan 2.0 3.0 nan 0.0 B (x) float64 40B 3.0 4.0 nan 1.0 7.0 C (x) float64 40B nan nan nan 5.0 0.0 D (x) float64 40B nan 3.0 nan -1.0 4.0
ds.interpolate_na(dim="x", method="linear") <xarray.Dataset> Size: 200B Dimensions: (x: 5) Coordinates:
- x (x) int64 40B 0 1 2 3 4 Data variables: A (x) float64 40B nan 2.0 3.0 1.5 0.0 B (x) float64 40B 3.0 4.0 2.5 1.0 7.0 C (x) float64 40B nan nan nan 5.0 0.0 D (x) float64 40B nan 3.0 1.0 -1.0 4.0
ds.interpolate_na(dim="x", method="linear", fill_value="extrapolate") <xarray.Dataset> Size: 200B Dimensions: (x: 5) Coordinates:
- x (x) int64 40B 0 1 2 3 4 Data variables: A (x) float64 40B 1.0 2.0 3.0 1.5 0.0 B (x) float64 40B 3.0 4.0 2.5 1.0 7.0 C (x) float64 40B 20.0 15.0 10.0 5.0 0.0 D (x) float64 40B 5.0 3.0 1.0 -1.0 4.0