cacosf, cacos, cacosl - cppreference.com (original) (raw)

Defined in header <complex.h>
float complex cacosf( float complex z ); (1) (since C99)
double complex cacos( double complex z ); (2) (since C99)
long double complex cacosl( long double complex z ); (3) (since C99)
Defined in header <tgmath.h>
#define acos( z ) (4) (since C99)

1-3) Computes the complex arc cosine of z with branch cuts outside the interval [−1,+1] along the real axis.

  1. Type-generic macro: If z has type long double complex, cacosl is called. if z has type double complex, cacos is called, if z has type float complex, cacosf is called. If z is real or integer, then the macro invokes the corresponding real function (acosf, acos, acosl). If z is imaginary, then the macro invokes the corresponding complex number version.

Contents

[edit] Parameters

[edit] Return value

If no errors occur, complex arc cosine of z is returned, in the range a strip unbounded along the imaginary axis and in the interval [0; π] along the real axis.

[edit] Error handling and special values

Errors are reported consistent with math_errhandling.

If the implementation supports IEEE floating-point arithmetic,

[edit] Notes

Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventially placed at the line segments (-∞,-1) and (1,∞) of the real axis.

The mathematical definition of the principal value of arc cosine is acos z = π + _i_ln(_i_z + √1-z2
)

For any z, acos(z) = π - acos(-z)

[edit] Example

#include <stdio.h> #include <math.h> #include <complex.h>   int main(void) { double complex z = cacos(-2); printf("cacos(-2+0i) = %f%+fi\n", creal(z), cimag(z));   double complex z2 = cacos(conj(-2)); // or CMPLX(-2, -0.0) printf("cacos(-2-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2));   // for any z, acos(z) = pi - acos(-z) double pi = acos(-1); double complex z3 = ccos(pi-z2); printf("ccos(pi - cacos(-2-0i) = %f%+fi\n", creal(z3), cimag(z3)); }

Output:

cacos(-2+0i) = 3.141593-1.316958i cacos(-2-0i) (the other side of the cut) = 3.141593+1.316958i ccos(pi - cacos(-2-0i) = 2.000000+0.000000i

[edit] References

[edit] See also