cacosf, cacos, cacosl - cppreference.com (original) (raw)
| Defined in header <complex.h> | ||
|---|---|---|
| float complex cacosf( float complex z ); | (1) | (since C99) |
| double complex cacos( double complex z ); | (2) | (since C99) |
| long double complex cacosl( long double complex z ); | (3) | (since C99) |
| Defined in header <tgmath.h> | ||
| #define acos( z ) | (4) | (since C99) |
1-3) Computes the complex arc cosine of z with branch cuts outside the interval [−1,+1] along the real axis.
- Type-generic macro: If
zhas type long double complex,cacoslis called. ifzhas type double complex,cacosis called, ifzhas type float complex,cacosfis called. Ifzis real or integer, then the macro invokes the corresponding real function (acosf, acos, acosl). Ifzis imaginary, then the macro invokes the corresponding complex number version.
Contents
- 1 Parameters
- 2 Return value
- 3 Error handling and special values
- 4 Notes
- 5 Example
- 6 References
- 7 See also
[edit] Parameters
[edit] Return value
If no errors occur, complex arc cosine of z is returned, in the range a strip unbounded along the imaginary axis and in the interval [0; π] along the real axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- cacos(conj(z)) == conj(cacos(z))
- If
zis±0+0i, the result isπ/2-0i - If
zis±0+NaNi, the result isπ/2+NaNi - If
zisx+∞i(for any finite x), the result isπ/2-∞i - If
zisx+NaNi(for any nonzero finite x), the result isNaN+NaNiand FE_INVALID may be raised. - If
zis-∞+yi(for any positive finite y), the result isπ-∞i - If
zis+∞+yi(for any positive finite y), the result is+0-∞i - If
zis-∞+∞i, the result is3π/4-∞i - If
zis+∞+∞i, the result isπ/4-∞i - If
zis±∞+NaNi, the result isNaN±∞i(the sign of the imaginary part is unspecified) - If
zisNaN+yi(for any finite y), the result isNaN+NaNiand FE_INVALID may be raised - If
zisNaN+∞i, the result isNaN-∞i - If
zisNaN+NaNi, the result isNaN+NaNi
[edit] Notes
Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventially placed at the line segments (-∞,-1) and (1,∞) of the real axis.
The mathematical definition of the principal value of arc cosine is acos z = π + _i_ln(_i_z + √1-z2
)
For any z, acos(z) = π - acos(-z)
[edit] Example
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double complex z = cacos(-2); printf("cacos(-2+0i) = %f%+fi\n", creal(z), cimag(z)); double complex z2 = cacos(conj(-2)); // or CMPLX(-2, -0.0) printf("cacos(-2-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2)); // for any z, acos(z) = pi - acos(-z) double pi = acos(-1); double complex z3 = ccos(pi-z2); printf("ccos(pi - cacos(-2-0i) = %f%+fi\n", creal(z3), cimag(z3)); }
Output:
cacos(-2+0i) = 3.141593-1.316958i cacos(-2-0i) (the other side of the cut) = 3.141593+1.316958i ccos(pi - cacos(-2-0i) = 2.000000+0.000000i
[edit] References
C11 standard (ISO/IEC 9899:2011):
7.3.5.1 The cacos functions (p: 190)
7.25 Type-generic math <tgmath.h> (p: 373-375)
G.6.1.1 The cacos functions (p: 539)
G.7 Type-generic math <tgmath.h> (p: 545)
C99 standard (ISO/IEC 9899:1999):
7.3.5.1 The cacos functions (p: 172)
7.22 Type-generic math <tgmath.h> (p: 335-337)
G.6.1.1 The cacos functions (p: 474)
G.7 Type-generic math <tgmath.h> (p: 480)