catanf, catan, catanl - cppreference.com (original) (raw)
Defined in header <complex.h> | ||
---|---|---|
float complex catanf( float complex z ); | (1) | (since C99) |
double complex catan( double complex z ); | (2) | (since C99) |
long double complex catanl( long double complex z ); | (3) | (since C99) |
Defined in header <tgmath.h> | ||
#define atan( z ) | (4) | (since C99) |
1-3) Computes the complex arc tangent of z
with branch cuts outside the interval [−i,+i] along the imaginary axis.
- Type-generic macro: If
z
has type long double complex,catanl
is called. ifz
has type double complex,catan
is called, ifz
has type float complex,catanf
is called. Ifz
is real or integer, then the macro invokes the corresponding real function (atanf, atan, atanl). Ifz
is imaginary, then the macro invokes the corresponding real version of the function atanh, implementing the formula atan(iy) = i atanh(y), and the return type of the macro is imaginary.
[edit] Parameters
[edit] Return value
If no errors occur, complex arc tangent of z
is returned, in the range of a strip unbounded along the imaginary axis and in the interval [−π/2; +π/2] along the real axis.
Errors and special cases are handled as if the operation is implemented by -I * catanh(I*z).
[edit] Notes
Inverse tangent (or arc tangent) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞i,-i) and (+i,+∞i) of the imaginary axis.
The mathematical definition of the principal value of inverse tangent is atan z = - i [ln(1 - iz) - ln (1 + iz]
[edit] Example
#include <stdio.h> #include <float.h> #include <complex.h> int main(void) { double complex z = catan(2I); printf("catan(+0+2i) = %f%+fi\n", creal(z), cimag(z)); double complex z2 = catan(-conj(2I)); // or CMPLX(-0.0, 2) printf("catan(-0+2i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2)); double complex z3 = 2catan(2I*DBL_MAX); // or CMPLX(0, INFINITY) printf("2catan(+0+iInf) = %f%+fi\n", creal(z3), cimag(z3)); }
Output:
catan(+0+2i) = 1.570796+0.549306i catan(-0+2i) (the other side of the cut) = -1.570796+0.549306i 2catan(+0+iInf) = 3.141593+0.000000i
[edit] References
C11 standard (ISO/IEC 9899:2011):
7.3.5.3 The catan functions (p: 191)
7.25 Type-generic math <tgmath.h> (p: 373-375)
G.7 Type-generic math <tgmath.h> (p: 545)
C99 standard (ISO/IEC 9899:1999):
7.3.5.3 The catan functions (p: 173)
7.22 Type-generic math <tgmath.h> (p: 335-337)
G.7 Type-generic math <tgmath.h> (p: 480)