catanf, catan, catanl - cppreference.com (original) (raw)

Defined in header <complex.h>
float complex catanf( float complex z ); (1) (since C99)
double complex catan( double complex z ); (2) (since C99)
long double complex catanl( long double complex z ); (3) (since C99)
Defined in header <tgmath.h>
#define atan( z ) (4) (since C99)

1-3) Computes the complex arc tangent of z with branch cuts outside the interval [−i,+i] along the imaginary axis.

  1. Type-generic macro: If z has type long double complex, catanl is called. if z has type double complex, catan is called, if z has type float complex, catanf is called. If z is real or integer, then the macro invokes the corresponding real function (atanf, atan, atanl). If z is imaginary, then the macro invokes the corresponding real version of the function atanh, implementing the formula atan(iy) = i atanh(y), and the return type of the macro is imaginary.

[edit] Parameters

[edit] Return value

If no errors occur, complex arc tangent of z is returned, in the range of a strip unbounded along the imaginary axis and in the interval [−π/2; +π/2] along the real axis.

Errors and special cases are handled as if the operation is implemented by -I * catanh(I*z).

[edit] Notes

Inverse tangent (or arc tangent) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞i,-i) and (+i,+∞i) of the imaginary axis.

The mathematical definition of the principal value of inverse tangent is atan z = - i [ln(1 - iz) - ln (1 + iz]

[edit] Example

#include <stdio.h> #include <float.h> #include <complex.h>   int main(void) { double complex z = catan(2I); printf("catan(+0+2i) = %f%+fi\n", creal(z), cimag(z));   double complex z2 = catan(-conj(2I)); // or CMPLX(-0.0, 2) printf("catan(-0+2i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2));   double complex z3 = 2catan(2I*DBL_MAX); // or CMPLX(0, INFINITY) printf("2catan(+0+iInf) = %f%+fi\n", creal(z3), cimag(z3)); }

Output:

catan(+0+2i) = 1.570796+0.549306i catan(-0+2i) (the other side of the cut) = -1.570796+0.549306i 2catan(+0+iInf) = 3.141593+0.000000i

[edit] References

[edit] See also