catanhf, catanh, catanhl - cppreference.com (original) (raw)
| Defined in header <complex.h> | ||
|---|---|---|
| float complex catanhf( float complex z ); | (1) | (since C99) |
| double complex catanh( double complex z ); | (2) | (since C99) |
| long double complex catanhl( long double complex z ); | (3) | (since C99) |
| Defined in header <tgmath.h> | ||
| #define atanh( z ) | (4) | (since C99) |
1-3) Computes the complex arc hyperbolic tangent of z with branch cuts outside the interval [−1; +1] along the real axis.
- Type-generic macro: If
zhas type long double complex,catanhlis called. ifzhas type double complex,catanhis called, ifzhas type float complex,catanhfis called. Ifzis real or integer, then the macro invokes the corresponding real function (atanhf, atanh, atanhl). Ifzis imaginary, then the macro invokes the corresponding real version of atan, implementing the formula atanh(iy) = i atan(y), and the return type is imaginary.
Contents
- 1 Parameters
- 2 Return value
- 3 Error handling and special values
- 4 Notes
- 5 Example
- 6 References
- 7 See also
[edit] Parameters
[edit] Return value
If no errors occur, the complex arc hyperbolic tangent of z is returned, in the range of a half-strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- catanh(conj(z)) == conj(catanh(z))
- catanh(-z) == -catanh(z)
- If
zis+0+0i, the result is+0+0i - If
zis+0+NaNi, the result is+0+NaNi - If
zis+1+0i, the result is+∞+0iand FE_DIVBYZERO is raised - If
zisx+∞i(for any finite positive x), the result is+0+iπ/2 - If
zisx+NaNi(for any finite nonzero x), the result isNaN+NaNiand FE_INVALID may be raised - If
zis+∞+yi(for any finite positive y), the result is+0+iπ/2 - If
zis+∞+∞i, the result is+0+iπ/2 - If
zis+∞+NaNi, the result is+0+NaNi - If
zisNaN+yi(for any finite y), the result isNaN+NaNiand FE_INVALID may be raised - If
zisNaN+∞i, the result is±0+iπ/2(the sign of the real part is unspecified) - If
zisNaN+NaNi, the result isNaN+NaNi
[edit] Notes
Although the C standard names this function "complex arc hyperbolic tangent", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic tangent", and, less common, "complex area hyperbolic tangent".
Inverse hyperbolic tangent is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segmentd (-∞,-1] and [+1,+∞) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic tangent is atanh z = .
For any z, atanh(z) =
[edit] Example
#include <stdio.h> #include <complex.h> int main(void) { double complex z = catanh(2); printf("catanh(+2+0i) = %f%+fi\n", creal(z), cimag(z)); double complex z2 = catanh(conj(2)); // or catanh(CMPLX(2, -0.0)) in C11 printf("catanh(+2-0i) (the other side of the cut) = %f%+fi\n", creal(z2), cimag(z2)); // for any z, atanh(z) = atan(iz)/i double complex z3 = catanh(1+2I); printf("catanh(1+2i) = %f%+fi\n", creal(z3), cimag(z3)); double complex z4 = catan((1+2I)*I)/I; printf("catan(i * (1+2i))/i = %f%+fi\n", creal(z4), cimag(z4)); }
Output:
catanh(+2+0i) = 0.549306+1.570796i catanh(+2-0i) (the other side of the cut) = 0.549306-1.570796i catanh(1+2i) = 0.173287+1.178097i catan(i * (1+2i))/i = 0.173287+1.178097i
[edit] References
C11 standard (ISO/IEC 9899:2011):
7.3.6.3 The catanh functions (p: 193)
7.25 Type-generic math <tgmath.h> (p: 373-375)
G.6.2.3 The catanh functions (p: 540-541)
G.7 Type-generic math <tgmath.h> (p: 545)
C99 standard (ISO/IEC 9899:1999):
7.3.6.3 The catanh functions (p: 175)
7.22 Type-generic math <tgmath.h> (p: 335-337)
G.6.2.3 The catanh functions (p: 475-476)
G.7 Type-generic math <tgmath.h> (p: 480)