tan, tanf, tanl - cppreference.com (original) (raw)
Defined in header <math.h> | ||
---|---|---|
float tanf( float arg ); | (1) | (since C99) |
double tan( double arg ); | (2) | |
long double tanl( long double arg ); | (3) | (since C99) |
_Decimal32 tand32( _Decimal32 arg ); | (4) | (since C23) |
_Decimal64 tand64( _Decimal64 arg ); | (5) | (since C23) |
_Decimal128 tand128( _Decimal128 arg ); | (6) | (since C23) |
Defined in header <tgmath.h> | ||
#define tan( arg ) | (7) | (since C99) |
1-6) Computes the tangent of arg (measured in radians).
- Type-generic macro: If the argument has type long double, (3) (
tanl
) is called. Otherwise, if the argument has integer type or the type double, (2) (tan
) is called. Otherwise, (1) (tanf
) is called. If the argument is complex, then the macro invokes the corresponding complex function (ctanf, ctan, ctanl).
The functions (4-6) are declared if and only if the implementation predefines __STDC_IEC_60559_DFP__ (i.e. the implementation supports decimal floating-point numbers). | (since C23) |
---|
Contents
[edit] Parameters
arg | - | floating-point value representing angle in radians |
---|
[edit] Return value
If no errors occur, the tangent of arg (tan(arg)) is returned.
The result may have little or no significance if the magnitude of arg is large. | (until C99) |
---|
If a domain error occurs, an implementation-defined value is returned (NaN where supported).
If a range error occurs due to underflow, the correct result (after rounding) is returned.
[edit] Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559):
- if the argument is ±0, it is returned unmodified;
- if the argument is ±∞, NaN is returned and FE_INVALID is raised;
- if the argument is NaN, NaN is returned.
[edit] Notes
The case where the argument is infinite is not specified to be a domain error in C, but it is defined as a domain error in POSIX.
The function has mathematical poles at π(1/2 + n); however no common floating-point representation is able to represent π/2
exactly, thus there is no value of the argument for which a pole error occurs.
[edit] Example
#include <errno.h> #include <fenv.h> #include <math.h> #include <stdio.h> #ifndef GNUC #pragma STDC FENV_ACCESS ON #endif int main(void) { const double pi = acos(-1); // typical usage printf("tan(pi1/4) = %+f\n", tan(pi * 1 / 4)); // 45 deg printf("tan(pi3/4) = %+f\n", tan(pi * 3 / 4)); // 135 deg printf("tan(pi5/4) = %+f\n", tan(pi * 5 / 4)); // -135 deg printf("tan(pi7/4) = %+f\n", tan(pi * 7 / 4)); // -45 deg // special values printf("tan(+0) = %f\n", tan(0.0)); printf("tan(-0) = %f\n", tan(-0.0)); // error handling feclearexcept(FE_ALL_EXCEPT); printf("tan(INFINITY) = %f\n", tan(INFINITY)); if (fetestexcept(FE_INVALID)) puts(" FE_INVALID raised"); }
Possible output:
tan(pi1/4) = +1.000000 tan(pi3/4) = -1.000000 tan(pi5/4) = +1.000000 tan(pi7/4) = -1.000000 tan(+0) = 0.000000 tan(-0) = -0.000000 tan(INFINITY) = -nan FE_INVALID raised
[edit] References
C23 standard (ISO/IEC 9899:2024):
7.12.4.7 The tan functions (p: TBD)
7.25 Type-generic math <tgmath.h> (p: TBD)
F.10.1.7 The tan functions (p: TBD)
C17 standard (ISO/IEC 9899:2018):
7.12.4.7 The tan functions (p: 175)
7.25 Type-generic math <tgmath.h> (p: 272-273)
F.10.1.7 The tan functions (p: 378)
C11 standard (ISO/IEC 9899:2011):
7.12.4.7 The tan functions (p: 240)
7.25 Type-generic math <tgmath.h> (p: 373-375)
F.10.1.7 The tan functions (p: 519)
C99 standard (ISO/IEC 9899:1999):
7.12.4.7 The tan functions (p: 220)
7.22 Type-generic math <tgmath.h> (p: 335-337)
F.9.1.7 The tan functions (p: 457)
C89/C90 standard (ISO/IEC 9899:1990):
4.5.2.7 The tan function