std::adjacent_difference - cppreference.com (original) (raw)

Defined in header
template< class InputIt, class OutputIt > OutputIt adjacent_difference( InputIt first, InputIt last, OutputIt d_first ); (1) (constexpr since C++20)
template< class ExecutionPolicy, class ForwardIt1, class ForwardIt2 >ForwardIt2 adjacent_difference( ExecutionPolicy&& policy, ForwardIt1 first, ForwardIt1 last, ForwardIt2 d_first ); (2) (since C++17)
template< class InputIt, class OutputIt, class BinaryOp > OutputIt adjacent_difference( InputIt first, InputIt last, OutputIt d_first, BinaryOp op ); (3) (constexpr since C++20)
template< class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOp >ForwardIt2 adjacent_difference( ExecutionPolicy&& policy, ForwardIt1 first, ForwardIt1 last, ForwardIt2 d_first, BinaryOp op ); (4) (since C++17)

Let T be the value type of decltype(first).

  1. If [first, last) is empty, does nothing.

Otherwise, performs the following operations in order:

  1. Creates an accumulator acc of type T, and initializes it with *first.
  2. Assigns acc to *d_first.
  3. For each iterator iter in [++first, last) in order, performs the following operations in order:

a) Creates an object val of type T, and initializes it with *iter.

b) Computes val - acc(until C++20)val - std::move(acc)(since C++20).

c) Assigns the result to *++d_first.

d) Copy(until C++20)Move(since C++20) assigns from val to acc.

  1. If [first, last) is empty, does nothing.

Otherwise, performs the following operations in order:

  1. Assigns *first to *d_first.
  2. For each integer i in [1, std::distance(first, last)), performs the following operations in order:

a) Computes curr - prev, where curr is the next ith iterator of first, and prev is the next i - 1th iterator of first.

b) Assigns the result to *dest, where dest is the next ith iterator of d_first.

  1. Same as (1), but computes op(val, acc)(until C++20)op(val, std::move(acc))(since C++20) instead.

  2. Same as (2), but computes op(curr, prev) instead.

Given binary_op as the actual binary operation:

Contents

[edit] Parameters

first, last - the pair of iterators defining the range of elements to
d_first - the beginning of the destination range
policy - the execution policy to use
op - binary operation function object that will be applied. The signature of the function should be equivalent to the following: Ret fun(const Type1 &a, const Type2 &b); The signature does not need to have const &. The types Type1 and Type2 must be such that an object of type iterator_traits<InputIt>::value_type can be implicitly converted to both of them. The type Ret must be such that an object of type OutputIt can be dereferenced and assigned a value of type Ret. ​
Type requirements
-InputIt must meet the requirements of LegacyInputIterator.
-OutputIt must meet the requirements of LegacyOutputIterator.
-ForwardIt1, ForwardIt2 must meet the requirements of LegacyForwardIterator.

[edit] Return value

Iterator to the element past the last element written, or d_first if [first, last) is empty.

[edit] Complexity

Given \(\scriptsize N\)N as std::distance(first, last):

1,2) Exactly \(\scriptsize N-1\)N-1 applications of operator-.

3,4) Exactly \(\scriptsize N-1\)N-1 applications of the binary function op.

[edit] Exceptions

The overloads with a template parameter named ExecutionPolicy report errors as follows:

[edit] Possible implementation

adjacent_difference (1)
template<class InputIt, class OutputIt> constexpr // since C++20 OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt d_first) { if (first == last) return d_first;   typedef typename std::iterator_traits<InputIt>::value_type value_t; value_t acc = *first; *d_first = acc;   while (++first != last) { value_t val = *first; *++d_first = val - std::move(acc); // std::move since C++20 acc = std::move(val); }   return ++d_first; }
adjacent_difference (3)
template<class InputIt, class OutputIt, class BinaryOp> constexpr // since C++20 OutputIt adjacent_difference(InputIt first, InputIt last, OutputIt d_first, BinaryOp op) { if (first == last) return d_first;   typedef typename std::iterator_traits<InputIt>::value_type value_t; value_t acc = *first; *d_first = acc;   while (++first != last) { value_t val = *first; *++d_first = op(val, std::move(acc)); // std::move since C++20 acc = std::move(val); }   return ++d_first; }

[edit] Notes

acc was introduced because of the resolution of LWG issue 539. The reason of using acc rather than directly calculating the differences is because the semantic of the latter is confusing if the following types mismatch:

acc serves as the intermediate object to cache values of the iterated elements:

char i_array[4] = {100, 100, 100, 100}; int o_array[4];   // OK: performs conversions when needed // 1. creates “acc” of type char (the value type) // 2. “acc” is assigned to the first element of “o_array” // 3. the char arguments are used for long multiplication (char -> long) // 4. the long product is assigned to the output range (long -> int) // 5. the next value of “i_array” is assigned to “acc” // 6. go back to step 3 to process the remaining elements in the input range std::adjacent_difference(i_array, i_array + 4, o_array, std::multiplies{});

[edit] Example

#include #include #include #include #include #include   void println(auto comment, const auto& sequence) { std::cout << comment; for (const auto& n : sequence) std::cout << n << ' '; std::cout << '\n'; };   int main() { // Default implementation - the difference between two adjacent items std::vector v{4, 6, 9, 13, 18, 19, 19, 15, 10}; println("Initially, v = ", v); std::adjacent_difference(v.begin(), v.end(), v.begin()); println("Modified v = ", v);   // Fibonacci std::array<int, 10> a {1}; std::adjacent_difference(std::begin(a), std::prev(std::end(a)), std::next(std::begin(a)), std::plus<>{}); println("Fibonacci, a = ", a); }

Output:

Initially, v = 4 6 9 13 18 19 19 15 10 Modified v = 4 2 3 4 5 1 0 -4 -5 Fibonacci, a = 1 1 2 3 5 8 13 21 34 55

[edit] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
LWG 242 C++98 op could not have side effects it cannot modifythe ranges involved
LWG 539 C++98 the type requirements needed for the resultevaluations and assignments to be valid were missing added
LWG 3058 C++17 for overloads (2,4), the result of each invocationof operator- or op was assigned to a temporaryobject, and that object is assigned to the output range assign the resultsto the outputrange directly

[edit] See also