std::ranges::pop_heap - cppreference.com (original) (raw)
Defined in header | ||
---|---|---|
Call signature | ||
template< std::random_access_iterator I, std::sentinel_for<I> S, class Comp = ranges::less, class Proj = std::identity > requires std::sortable<I, Comp, Proj> constexpr I pop_heap( I first, S last, Comp comp = {}, Proj proj = {} ); | (1) | (since C++20) |
template< ranges::random_access_range R, class Comp = ranges::less, class Proj = std::identity > requires std::sortable<ranges::iterator_t<R>, Comp, Proj> constexpr ranges::borrowed_iterator_t<R> pop_heap( R&& r, Comp comp = {}, Proj proj = {} ); | (2) | (since C++20) |
Swaps the first element and the last element of the specified heap with respect to comp and proj and makes the subrange excluding the first position into a heap with respect to comp and proj. This has the effect of removing the first element from the specified heap.
The specified heap is
[
first,
last)
.The specified heap is r.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
[edit] Parameters
first, last | - | the iterator-sentinel pair defining the range of elements to modify |
---|---|---|
r | - | the range of elements to modify |
comp | - | comparator to apply to the projected elements |
proj | - | projection to apply to the elements |
[edit] Return value
- last
[edit] Complexity
At most \(\scriptsize 2\log{(N)}\)2log(N) applications of comp and \(\scriptsize 4\log{(N)}\)4log(N) applications of proj, where \(\scriptsize N \)N is:
[edit] Example
#include #include #include #include #include template void print(std::string_view rem, I first = {}, I last = {}, std::string_view term = "\n") { for (std::cout << rem; first != last; ++first) std::cout << *first << ' '; std::cout << term; } int main() { std::array v{3, 1, 4, 1, 5, 9, 2, 6, 5, 3}; print("initially, v: ", v.cbegin(), v.cend()); std::ranges::make_heap(v); print("make_heap, v: ", v.cbegin(), v.cend()); print("convert heap into sorted array:"); for (auto n {std::ssize(v)}; n >= 0; --n) { std::ranges::pop_heap(v.begin(), v.begin() + n); print("[ ", v.cbegin(), v.cbegin() + n, "] "); print("[ ", v.cbegin() + n, v.cend(), "]\n"); } }
Output:
initially, v: 3 1 4 1 5 9 2 6 5 3 make_heap, v: 9 6 4 5 5 3 2 1 1 3 convert heap into sorted array: [ 6 5 4 3 5 3 2 1 1 9 ] [ ] [ 5 5 4 3 1 3 2 1 6 ] [ 9 ] [ 5 3 4 1 1 3 2 5 ] [ 6 9 ] [ 4 3 3 1 1 2 5 ] [ 5 6 9 ] [ 3 2 3 1 1 4 ] [ 5 5 6 9 ] [ 3 2 1 1 3 ] [ 4 5 5 6 9 ] [ 2 1 1 3 ] [ 3 4 5 5 6 9 ] [ 1 1 2 ] [ 3 3 4 5 5 6 9 ] [ 1 1 ] [ 2 3 3 4 5 5 6 9 ] [ 1 ] [ 1 2 3 3 4 5 5 6 9 ] [ ] [ 1 1 2 3 3 4 5 5 6 9 ]
[edit] See also
ranges::push_heap(C++20) | adds an element to a max heap(algorithm function object)[edit] |
---|---|
ranges::is_heap(C++20) | checks if the given range is a max heap(algorithm function object)[edit] |
ranges::is_heap_until(C++20) | finds the largest subrange that is a max heap(algorithm function object)[edit] |
ranges::make_heap(C++20) | creates a max heap out of a range of elements(algorithm function object)[edit] |
ranges::sort_heap(C++20) | turns a max heap into a range of elements sorted in ascending order(algorithm function object)[edit] |
pop_heap | removes the largest element from a max heap (function template) [edit] |