std::ranges::sort_heap - cppreference.com (original) (raw)

Defined in header
Call signature
template< std::random_access_iterator I, std::sentinel_for<I> S, class Comp = ranges::less, class Proj = std::identity > requires std::sortable<I, Comp, Proj> constexpr I sort_heap( I first, S last, Comp comp = {}, Proj proj = {} ); (1) (since C++20)
template< ranges::random_access_range R, class Comp = ranges::less, class Proj = std::identity > requires std::sortable<ranges::iterator_t<R>, Comp, Proj> constexpr ranges::borrowed_iterator_t<R> sort_heap( R&& r, Comp comp = {}, Proj proj = {} ); (2) (since C++20)

Sorts the elements in the specified range with respect to comp and proj, where the range originally represents a heap with respect to comp and proj. The sorted range no longer maintains the heap property.

  1. The specified range is [first, last).

  2. The specified range is r.

If the specified range is not a heap with respect to comp and proj, the behavior is undefined.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit] Parameters

first, last - the iterator-sentinel pair defining the range of elements to modify
r - the range of elements to modify
comp - comparator to apply to the projected elements
proj - projection to apply to the elements

[edit] Return value

  1. last

[edit] Complexity

At most \(\scriptsize 2N \cdot \log(N)\)2N⋅log(N) applications of comp and \(\scriptsize 4N \cdot \log(N)\)4N⋅log(N) applications of proj, where \(\scriptsize N \)N is:

[edit] Possible implementation

struct sort_heap_fn { template<std::random_access_iterator I, std::sentinel_for S, class Comp = ranges::less, class Proj = std::identity> requires std::sortable<I, Comp, Proj> constexpr I operator()(I first, S last, Comp comp = {}, Proj proj = {}) const { auto ret{ranges::next(first, last)}; for (auto last{ret}; first != last; --last) ranges::pop_heap(first, last, comp, proj); return ret; }   template<ranges::random_access_range R, class Comp = ranges::less, class Proj = std::identity> requires std::sortable<ranges::iterator_t, Comp, Proj> constexpr ranges::borrowed_iterator_t operator()(R&& r, Comp comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj)); } };   inline constexpr sort_heap_fn sort_heap{};

[edit] Example

#include #include #include   void print(auto const& rem, const auto& v) { std::cout << rem; for (const auto i : v) std::cout << i << ' '; std::cout << '\n'; }   int main() { std::array v{3, 1, 4, 1, 5, 9}; print("original array: ", v);   std::ranges::make_heap(v); print("after make_heap: ", v);   std::ranges::sort_heap(v); print("after sort_heap: ", v); }

Output:

original array: 3 1 4 1 5 9 after make_heap: 9 5 4 1 1 3 after sort_heap: 1 1 3 4 5 9

[edit] See also

ranges::is_heap(C++20) checks if the given range is a max heap(algorithm function object)[edit]
ranges::is_heap_until(C++20) finds the largest subrange that is a max heap(algorithm function object)[edit]
ranges::make_heap(C++20) creates a max heap out of a range of elements(algorithm function object)[edit]
ranges::pop_heap(C++20) removes the largest element from a max heap(algorithm function object)[edit]
ranges::push_heap(C++20) adds an element to a max heap(algorithm function object)[edit]
sort_heap turns a max heap into a range of elements sorted in ascending order (function template) [edit]