std::ranges::unique - cppreference.com (original) (raw)

Defined in header
Call signature
template< std::permutable I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_equivalence_relation<std::projected<I, Proj>> C = ranges::equal_to > constexpr ranges::subrange<I> unique( I first, S last, C comp = {}, Proj proj = {} ); (1) (since C++20)
template< ranges::forward_range R, class Proj = std::identity, std::indirect_equivalence_relation<std::projected<ranges::iterator_t<R>, Proj>> C = ranges::equal_to >requires std::permutable<ranges::iterator_t<R>> constexpr ranges::borrowed_subrange_t<R> unique( R&& r, C comp = {}, Proj proj = {} ); (2) (since C++20)
  1. Eliminates all except the first element from every consecutive group of equivalent elements from the range [first, last) and returns a subrange [ret, last), where ret is a past-the-end iterator for the new end of the range.

Two consecutive elements *(i - 1) and *i are considered equivalent if std::invoke(comp, std::invoke(proj, *(i - 1)), std::invoke(proj, *i)) == true, where i is an iterator in the range [first + 1, last).

  1. Same as (1), but uses r as the range, as if using ranges::begin(r) as first, and ranges::end(r) as last.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Contents

[edit] Parameters

first, last - the iterator-sentinel pair defining the range of elements to process
r - the range of elements to process
comp - the binary predicate to compare the projected elements
proj - the projection to apply to the elements

[edit] Return value

Returns {ret, last}, where ret is a past-the-end iterator for the new end of the range.

[edit] Complexity

For nonempty ranges, exactly ranges::distance(first, last) - 1 applications of the corresponding predicate comp and no more that twice as many applications of any projection proj.

[edit] Notes

Removing is done by shifting (by means of move assignment) the elements in the range in such a way that the elements that are not to be removed appear in the beginning of the range. Relative order of the elements that remain is preserved and the physical size of the container is unchanged. Iterators in [ret, last) (if any) are still dereferenceable, but the elements themselves have unspecified values (as per MoveAssignable post-condition).

A call to ranges::unique is sometimes followed by a call to a container’s erase member function, which erases the unspecified values and reduces the physical size of the container to match its new logical size. These two invocations together model the Erase–remove idiom.

[edit] Possible implementation

struct unique_fn { template<std::permutable I, std::sentinel_for S, class Proj = std::identity, std::indirect_equivalence_relation<std::projected<I, Proj>> C = ranges::equal_to> constexpr ranges::subrange operator()(I first, S last, C comp = {}, Proj proj = {}) const { first = ranges::adjacent_find(first, last, comp, proj); if (first == last) return {first, first}; auto i {first}; ++first; while (++first != last) if (std::invoke(comp, std::invoke(proj, *i), std::invoke(proj, *first))) *++i = ranges::iter_move(first); return {++i, first}; }   template<ranges::forward_range R, class Proj = std::identity, std::indirect_equivalence_relation<std::projected<ranges::iterator_t, Proj>> C = ranges::equal_to> requires std::permutable<ranges::iterator_t> constexpr ranges::borrowed_subrange_t operator()(R&& r, C comp = {}, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::move(comp), std::move(proj)); } };   inline constexpr unique_fn unique {};

[edit] Example

#include #include #include #include #include   struct id { int i; explicit id(int i) : i {i} {} };   void print(id i, const auto& v) { std::cout << i.i << ") "; std::ranges::for_each(v, [](auto const& e) { std::cout << e << ' '; }); std::cout << '\n'; }   int main() { // a vector containing several duplicated elements std::vector v {1, 2, 1, 1, 3, 3, 3, 4, 5, 4};   print(id {1}, v);   // remove consecutive (adjacent) duplicates const auto ret = std::ranges::unique(v); // v now holds {1 2 1 3 4 5 4 x x x}, where 'x' is indeterminate v.erase(ret.begin(), ret.end()); print(id {2}, v);   // sort followed by unique, to remove all duplicates std::ranges::sort(v); // {1 1 2 3 4 4 5} print(id {3}, v);   const auto [first, last] = std::ranges::unique(v.begin(), v.end()); // v now holds {1 2 3 4 5 x x}, where 'x' is indeterminate v.erase(first, last); print(id {4}, v);   // unique with custom comparison and projection std::vector<std::complex> vc { {1, 1}, {-1, 2}, {-2, 3}, {2, 4}, {-3, 5} }; print(id {5}, vc);   const auto ret2 = std::ranges::unique(vc, // consider two complex nums equal if their real parts are equal by module: [](int x, int y) { return std::abs(x) == std::abs(y); }, // comp z) { return z.real(); } // proj ); vc.erase(ret2.begin(), ret2.end()); print(id {6}, vc); }

Output:

  1. 1 2 1 1 3 3 3 4 5 4
  2. 1 2 1 3 4 5 4
  3. 1 1 2 3 4 4 5
  4. 1 2 3 4 5
  5. (1,1) (-1,2) (-2,3) (2,4) (-3,5)
  6. (1,1) (-2,3) (-3,5)

[edit] See also

ranges::unique_copy(C++20) creates a copy of some range of elements that contains no consecutive duplicates(algorithm function object)[edit]
ranges::adjacent_find(C++20) finds the first two adjacent items that are equal (or satisfy a given predicate)(algorithm function object)[edit]
ranges::removeranges::remove_if(C++20)(C++20) removes elements satisfying specific criteria(algorithm function object)[edit]
unique removes consecutive duplicate elements in a range (function template) [edit]
unique removes consecutive duplicate elements (public member function of std::list<T,Allocator>) [edit]
unique removes consecutive duplicate elements (public member function of std::forward_list<T,Allocator>) [edit]