Arithmetic operators - cppreference.com (original) (raw)

Returns the result of specific arithmetic operation.

Operator name Syntax Prototype examples (for class T)
Inside class definition Outside class definition
Unary plus +a T T::operator+() const; T operator+(const T& a);
Unary minus -a T T::operator-() const; T operator-(const T& a);
Addition a + b T T::operator+(const T2& b) const; T operator+(const T& a, const T2& b);
Subtraction a - b T T::operator-(const T2& b) const; T operator-(const T& a, const T2& b);
Multiplication a * b T T::operator*(const T2& b) const; T operator*(const T& a, const T2& b);
Division a / b T T::operator/(const T2& b) const; T operator/(const T& a, const T2& b);
Remainder a % b T T::operator%(const T2& b) const; T operator%(const T& a, const T2& b);
Bitwise NOT ~a T T::operator~() const; T operator~(const T& a);
Bitwise AND a & b T T::operator&(const T2& b) const; T operator&(const T& a, const T2& b);
Bitwise OR a | b T T::operator|(const T2& b) const; T operator|(const T& a, const T2& b);
Bitwise XOR a ^ b T T::operator^(const T2& b) const; T operator^(const T& a, const T2& b);
Bitwise left shift a << b T T::operator<<(const T2& b) const; T operator<<(const T& a, const T2& b);
Bitwise right shift a >> b T T::operator>>(const T2& b) const; T operator>>(const T& a, const T2& b);
Notes All operators in this table are overloadable. All built-in operators return values, and most user-defined overloads also return values so that the user-defined operators can be used in the same manner as the built-ins. However, in a user-defined operator overload, any type can be used as return type (including void). In particular, stream insertion and stream extraction overloads of operator<< and operator>> return T&. T2 can be any type including T.

Contents

[edit] General explanation

All built-in arithmetic operators compute the result of specific arithmetic operation and returns its result. The arguments are not modified.

[edit] Conversions

If the operand passed to a built-in arithmetic operator is integral or unscoped enumeration type, then before any other action (but after lvalue-to-rvalue conversion, if applicable), the operand undergoes integral promotion. If an operand has array or function type, array-to-pointer and function-to-pointer conversions are applied.

For the binary operators (except shifts), if the promoted operands have different types, usual arithmetic conversions are applied.

[edit] Overflows

Unsigned integer arithmetic is always performed modulo 2n
where n is the number of bits in that particular integer. E.g. for unsigned int, adding one to UINT_MAX gives ​0​, and subtracting one from ​0​ gives UINT_MAX.

When signed integer arithmetic operation overflows (the result does not fit in the result type), the behavior is undefined, — the possible manifestations of such an operation include:

[edit] Floating-point environment

If #pragma STDC FENV_ACCESS is supported and set to ON, all floating-point arithmetic operators obey the current floating-point rounding direction and report floating-point arithmetic errors as specified in math_errhandling unless part of a static initializer (in which case floating-point exceptions are not raised and the rounding mode is to nearest).

[edit] Floating-point contraction

Unless #pragma STDC FP_CONTRACT is supported and set to OFF, all floating-point arithmetic may be performed as if the intermediate results have infinite range and precision, that is, optimizations that omit rounding errors and floating-point exceptions are allowed. For example, C++ allows the implementation of (x * y) + z with a single fused multiply-add CPU instruction or optimization of a = x * x * x * x; as tmp = x * x; a = tmp * tmp.

Unrelated to contracting, intermediate results of floating-point arithmetic may have range and precision that is different from the one indicated by its type, see FLT_EVAL_METHOD.

Formally, the C++ standard makes no guarantee on the accuracy of floating-point operations.

[edit] Unary arithmetic operators

The unary arithmetic operator expressions have the form

| | | | | ----------------- | --- | | | + expression | (1) | | | | | | | - expression | (2) | | | | | |

  1. Unary plus (promotion).

  2. Unary minus (negation).

Unary + and - operators have higher precedence than all binary arithmetic operators, so expression cannot contain top-level binary arithmetic operators. These operators associate from right to left:

+a - b; // equivalent to (+a) - b, NOT +(a - b) -c + d; // equivalent to (-c) + d, NOT -(c + d)   +-e; // equivalent to +(-e), the unary + is a no-op if “e” is a built-in type // because any possible promotion is performed during negation already

[edit] Built-in unary arithmetic operators

  1. For the built-in unary plus operator, expression must be a prvalue of arithmetic, unscoped enumeration, or pointer type. Integral promotion is performed on expression if it has integral or unscoped enumeration type. The type of the result is the (possibly promoted) type of expression.

The result of the built-in promotion is the value of expression. The built-in unary operation is no-op if the operand is a prvalue of a promoted integral type or a pointer type. Otherwise, the type or value category of the operand is changed by integral promotion or lvalue-to-rvalue, array-to-pointer, function-to-pointer, or user-defined conversion. For example, char is converted to int , and non-generic captureless lambda expression is converted to function pointer(since C++11) in unary plus expressions.

  1. For the built-in unary minus operator, expression must be a prvalue of arithmetic or unscoped enumeration type. Integral promotion is performed on expression. The type of the result is the type of the promoted type of expression.

The result of the built-in negation is the negative of the promoted expression. For unsigned a, the value of -a is \({\small 2^N-a}\)2N
-a, where N is the number of bits after promotion.

[edit] Overloads

In overload resolution against user-defined operators, for every cv-unqualified promoted arithmetic type A and for every type T, the following function signatures participate in overload resolution:

| A operator+(A) | | | | ------------------ | | | | T* operator+(T*) | | | | A operator-(A) | | |

#include   int main() { char c = 0x6a; int n1 = 1; unsigned char n2 = 1; unsigned int n3 = 1; std::cout << "char: " << c << " int: " << +c << "\n" "-1, where 1 is signed: " << -n1 << "\n" "-1, where 1 is unsigned char: " << -n2 << "\n" "-1, where 1 is unsigned int: " << -n3 << '\n'; char a[3]; std::cout << "size of array: " << sizeof a << "\n" "size of pointer: " << sizeof +a << '\n'; }

Possible output:

char: j int: 106 -1, where 1 is signed: -1 -1, where 1 is unsigned char: -1 -1, where 1 is unsigned int: 4294967295 size of array: 3 size of pointer: 8

[edit] Additive operators

The additive operator expressions have the form

| | | | | -------------- | --- | | | lhs + rhs | (1) | | | | | | | lhs - rhs | (2) | | | | | |

  1. Binary plus (addition).

  2. Binary minus (subtraction).

Binary + and - operators have higher precedence than all other binary arithmetic operators except *, / and %. These operators associate from left to right:

a + b * c; // equivalent to a + (b * c), NOT (a + b) * c d / e - f; // equivalent to (d / e) - f, NOT d / (e - f) g + h >> i; // equivalent to (g + h) >> i, NOT g + (h >> i)   j - k + l - m; // equivalent to ((j - k) + l) - m

[edit] Built-in additive operators

For built-in binary plus and binary minus operators, both of lhs and rhs must be prvalues, and one of the following conditions must be satisfied:

In the remaining description in this section, "operand(s)", lhs and rhs refer to the converted or promoted operand(s).

  1. For built-in addition, one of the following conditions must be satisfied:
  1. For built-in subtraction, one of the following conditions must be satisfied:

If both operands have a floating-point type, and the type supports IEEE floating-point arithmetic (see std::numeric_limits::is_iec559):

[edit] Pointer arithmetic

When an expression J that has integral type is added to or subtracted from an expression P of pointer type, the result has the type of P.

When two pointer expressions P and Q are subtracted, the type of the result is std::ptrdiff_t.

These pointer arithmetic operators allow pointers to satisfy the LegacyRandomAccessIterator requirements.

For addition and subtraction, if P or Q have type “pointer to (possibly cv-qualified) T”, where T and the array element type are not similar, the behavior is undefined:

int arr[5] = {1, 2, 3, 4, 5}; unsigned int *p = reinterpret_cast<unsigned int*>(arr + 1); unsigned int k = *p; // OK, the value of “k” is 2 unsigned int *q = p + 1; // undefined behavior: “p” points to int, not unsigned int

[edit] Overloads

In overload resolution against user-defined operators, for every pair of promoted arithmetic types L and R and for every object type T, the following function signatures participate in overload resolution:

| LR operator+(L, R) | | | | ----------------------------------------------------------------- | | | | LR operator-(L, R) | | | | T* operator+(T*, std::ptrdiff_t) | | | | T* operator+(std::ptrdiff_t, T*) | | | | T* operator-(T*, std::ptrdiff_t) | | | | std::ptrdiff_t operator-(T*, T*) | | |

where LR is the result of usual arithmetic conversions on L and R.

#include   int main() { char c = 2; unsigned int un = 2; int n = -10; std::cout << " 2 + (-10), where 2 is a char = " << c + n << "\n" " 2 + (-10), where 2 is unsigned = " << un + n << "\n" " -10 - 2.12 = " << n - 2.12 << '\n';   char a[4] = {'a', 'b', 'c', 'd'}; char* p = &a[1]; std::cout << "Pointer addition examples: " << *p << *(p + 2) << *(2 + p) << (p - 1) << '\n'; char p2 = &a[4]; std::cout << "Pointer difference: " << p2 - p << '\n'; }

Output:

2 + (-10), where 2 is a char = -8 2 + (-10), where 2 is unsigned = 4294967288 -10 - 2.12 = -12.12 Pointer addition examples: bdda Pointer difference: 3

[edit] Multiplicative operators

The multiplicative operator expressions have the form

| | | | | -------------- | --- | | | lhs * rhs | (1) | | | | | | | lhs / rhs | (2) | | | | | | | lhs % rhs | (3) | | | | | |

  1. Multiplication.

  2. Division.

  3. Remainder.

Multiplicative operators have higher precedence than all other binary arithmetic operators. These operators associate from left to right:

a + b * c; // equivalent to a + (b * c), NOT (a + b) * c d / e - f; // equivalent to (d / e) - f, NOT d / (e - f) g % h >> i; // equivalent to (g % h) >> i, NOT g % (h >> i)   j * k / l % m; // equivalent to ((j * k) / l) % m

[edit] Built-in multiplicative operators

For built-in multiplication and division operators, both operands must have arithmetic or unscoped enumeration type. For the built-in remainder operator, both operands must have integral or unscoped enumeration type. Usual arithmetic conversions are performed on both operands.

In the remaining description in this section, "operand(s)", lhs and rhs refer to the converted operand(s).

  1. The result of built-in multiplication is the product of the operands.

If both operands have a floating-point type, and the type supports IEEE floating-point arithmetic (see std::numeric_limits::is_iec559):

  1. The result of built-in division is lhs divided by rhs. If rhs is zero, the behavior is undefined.

If both operands have an integral type, the result is the algebraic quotient (performs integer division): the quotient is truncated towards zero (fractional part is discarded).

If both operands have a floating-point type, and the type supports IEEE floating-point arithmetic (see std::numeric_limits::is_iec559):

  1. The result of built-in remainder is the remainder of the integer division of lhs by rhs. If rhs is zero, the behavior is undefined.

If a / b is representable in the result type, (a / b) * b + a % b == a.

If a / b is not representable in the result type, the behavior of both a / b and a % b is undefined (that means INT_MIN % -1 is undefined on two's complement systems).

Note: Until CWG issue 614 was resolved (N2757), if one or both operands to binary operator % were negative, the sign of the remainder was implementation-defined, as it depends on the rounding direction of integer division. The function std::div provided well-defined behavior in that case.

Note: for floating-point remainder, see std::remainder and std::fmod.

[edit] Overloads

In overload resolution against user-defined operators, for every pair of promoted arithmetic types LA and RA and for every pair of promoted integral types LI and RI the following function signatures participate in overload resolution:

| LRA operator*(LA, RA) | | | | ---------------------- | | | | LRA operator/(LA, RA) | | | | LRI operator%(LI, RI) | | |

where LRx is the result of usual arithmetic conversions on Lx and Rx.

#include   int main() { char c = 2; unsigned int un = 2; int n = -10; std::cout << "2 * (-10), where 2 is a char = " << c * n << "\n" "2 * (-10), where 2 is unsigned = " << un * n << "\n" "-10 / 2.12 = " << n / 2.12 << "\n" "-10 / 21 = " << n / 21 << "\n" "-10 % 21 = " << n % 21 << '\n'; }

Output:

2 * (-10), where 2 is a char = -20 2 * (-10), where 2 is unsigned = 4294967276 -10 / 2.12 = -4.71698 -10 / 21 = 0 -10 % 21 = -10

[edit] Bitwise logic operators

The bitwise logic operator expressions have the form

| | | | | -------------- | --- | | | ~ rhs | (1) | | | | | | | lhs & rhs | (2) | | | | | | | lhs | rhs | (3) | | | | | | | lhs ^ rhs | (4) | | | | | |

  1. Bitwise NOT.

  2. Bitwise AND.

  3. Bitwise OR.

  4. Bitwise XOR.

The bitwise NOT operator has higher precedence than all binary arithmetic operators. It associates from right to left:

a - b; // equivalent to (a) - b, NOT (a - b) ~c * d; // equivalent to (c) * d, NOT ~(c * d)   ~-e; // equivalent to ~(-e)

There is an ambiguity in the grammar when ~ is followed by a type name or decltype specifier(since C++11): it can either be operator~ or start a destructor identifier). The ambiguity is resolved by treating ~ as operator~. ~ can start a destructor identifier only in places where forming an operator~ is syntactically invalid.

All other bitwise logic operators have lower precedence than all other binary arithmetic operators. Bitwise AND has higher precedence than bitwise XOR, which has higher precedence than bitwise OR. They associate from left to right:

a & b * c; // equivalent to a & (b * c), NOT (a & b) * c d / e ^ f; // equivalent to (d / e) ^ f, NOT d / (e ^ f) g << h | i; // equivalent to (g << h) | i, NOT g << (h | i)   j & k & l; // equivalent to (j & k) & l m | n ^ o // equivalent to m | (n ^ o)

[edit] Built-in bitwise logic operators

For the built-in bitwise NOT operator, rhs must be a prvalue of integral or unscoped enumeration type, and integral promotion is performed on rhs. For other built-in bitwise logic operators, both operands must have integral or unscoped enumeration type, and usual arithmetic conversions are performed on both operands.

In the remaining description in this section, "operand(s)", lhs and rhs refer to the converted or promoted operand(s).

  1. Given the operand as x and the result of the built-in bitwise NOT operation as r. For each coefficient x_i of the base-2 representation of x, the corresponding coefficient r_i of the base-2 representation of r is 1 if x_i is ​0​, and ​0​ otherwise.

The type of the result r is the type of the operand x.

2-4) Given the operands as x and y respectively and the result of the built-in binary bitwise logic operations as r. For each pair of coefficients x_i and y_i of the base-2 representations of x and y respectively, the corresponding coefficient r_i of the base-2 representation of r is

  1. 1 if both x_i and y_i are 1, and ​0​ otherwise.

  2. 1 if at least one of x_i and y_i is 1, and ​0​ otherwise.

  3. 1 if either (but not both) of x_i and y_i is 1, and ​0​ otherwise.

The type of the result r is the type of the operands x and y.

[edit] Overloads

In overload resolution against user-defined operators, for every pair of promoted integral types L and R the following function signatures participate in overload resolution:

| R operator~(R) | | | | ------------------- | | | | LR operator&(L, R) | | | | LR operator^(L, R) | | | | LR operator|(L, R) | | |

where LR is the result of usual arithmetic conversions on L and R.

Output:

Mask: 0xf0 0000000011110000 Value: 0x12345678 00010010001101000101011001111000 Setting bits: 0x123456f8 00010010001101000101011011111000 Clearing bits: 0x12345608 00010010001101000101011000001000 Selecting bits: 0x70 00000000000000000000000001110000 XOR-ing bits: 0x12345688 00010010001101000101011010001000 Inverting bits: 0xedcba987 11101101110010111010100110000111

[edit] Bitwise shift operators

The bitwise shift operator expressions have the form

| | | | | --------------- | --- | | | lhs <<** rhs | (1) | | | | | | | lhs **>> rhs | (2) | | | | | |

  1. Bitwise left-shift.

  2. Bitwise right-shift.

Bitwise shift operators have higher precedence than bitwise logic operators, but have lower precedence than additive and multiplicative operators. These operators associate from left to right:

a >> b * c; // equivalent to a >> (b * c), NOT (a >> b) * c d << e & f; // equivalent to (d << e) & f, NOT d << (e & f)   g << h >> i; // equivalent to (g << h) >> i, NOT g << (h >> i)

[edit] Built-in bitwise shift operators

For the built-in bitwise shift operators, both operands must be prvalues of integral or unscoped enumeration type. Integral promotions are performed on both operands.

In the remaining description in this section, "operand(s)", a, b, lhs and rhs refer to the converted or promoted operand(s).

If the value of rhs is negative or is not less than the number of bits in lhs, the behavior is undefined.

For unsigned a, the value of a << b is the value of a * 2b, reduced modulo 2N where N is the number of bits in the return type (that is, bitwise left shift is performed and the bits that get shifted out of the destination type are discarded).For signed and non-negative a, if a * 2b is representable in the unsigned version of the return type, then that value, converted to signed, is the value of a << b (this makes it legal to create INT_MIN as 1 << 31); otherwise the behavior is undefined.For negative a, the behavior of a << b is undefined.For unsigned a and for signed and non-negative a, the value of a >> b is the integer part of a/2b.For negative a, the value of a >> b is implementation-defined (in most implementations, this performs arithmetic right shift, so that the result remains negative). (until C++20)
The value of a << b is the unique value congruent to a * 2b modulo 2N where N is the number of bits in the return type (that is, bitwise left shift is performed and the bits that get shifted out of the destination type are discarded).The value of a >> b is a/2b, rounded towards negative infinity (in other words, right shift on signed a is arithmetic right shift). (since C++20)

The type of the result is that of lhs.

[edit] Overloads

In overload resolution against user-defined operators, for every pair of promoted integral types L and R, the following function signatures participate in overload resolution:

| L operator<<(L, R) | | | | ------------------- | | | | L operator>>(L, R) | | |

#include   enum { ONE = 1, TWO = 2 };   int main() { std::cout << std::hex << std::showbase; char c = 0x10; unsigned long long ull = 0x123; std::cout << "0x123 << 1 = " << (ull << 1) << "\n" "0x123 << 63 = " << (ull << 63) << "\n" // overflow in unsigned "0x10 << 10 = " << (c << 10) << '\n'; // char is promoted to int long long ll = -1000; std::cout << std::dec << "-1000 >> 1 = " << (ll >> ONE) << '\n'; }

Output:

0x123 << 1 = 0x246 0x123 << 63 = 0x8000000000000000 0x10 << 10 = 0x4000 -1000 >> 1 = -500

[edit] Standard library

Arithmetic operators are overloaded for many standard library types.

[edit] Unary arithmetic operators

[edit] Additive operators

operator+operator-(C++11) performs add and subtract operations involving a time point (function template) [edit]
operator+operator-operator*operator/operator%(C++11) implements arithmetic operations with durations as arguments (function template) [edit]
operator+operator-(C++20) adds or subtracts a year_month_day and some number of years or months (function) [edit]
operator+ concatenates two strings, a string and a char, or a string and string_view (function template) [edit]
operator+operator- advances or decrements the iterator (public member function of std::reverse_iterator)
operator+operator- advances or decrements the iterator (public member function of std::move_iterator)
operator+operator-operator*operator/ performs complex number arithmetic on two complex values or a complex and a scalar (function template) [edit]
[ operator+operator-operator*operator/operator%operator&operator|operator^operator<>operator&&operator

[edit] Multiplicative operators

[edit] Bitwise logic operators

[edit] Bitwise shift operators

| | applies binary operators to each element of two valarrays, or a valarray and a value (function template) | | ----------------------------------------------------------------------------------------------------------- | | | performs binary shift left and shift right (public member function of std::bitset) |

[edit]

Throughout the standard library, bitwise shift operators are commonly overloaded with I/O stream (std::ios_base& or one of the classes derived from it) as both the left operand and return type. Such operators are known as stream insertion and stream extraction operators:

operator>> extracts formatted data (public member function of std::basic_istream<CharT,Traits>) [edit]
operator>>(std::basic_istream) extracts characters and character arrays (function template) [edit]
operator<< inserts formatted data (public member function of std::basic_ostream<CharT,Traits>) [edit]
operator<<(std::basic_ostream) inserts character data or insert into rvalue stream (function template) [edit]
operator<> serializes and deserializes a complex number (function template) [edit]
operator<> performs stream input and output of bitsets (function template) [edit]
operator<> performs stream input and output on strings (function template) [edit]
operator<>(C++11) performs stream input and output on pseudo-random number engine (function template) [edit]
operator<>(C++11) performs stream input and output on pseudo-random number distribution (function template) [edit]

[edit] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
CWG 614 C++98 the algebraic quotient of integer division wasrounded in implementation-defined direction the algebraic quotient of integerdivision is truncated towards zero(fractional part is discarded)
CWG 1450 C++98 the result of a / b was unspecified ifit is not representable in the result type the behavior of both a / b anda % b is undefined in this case
CWG 1457 C++98 the behavior of shifting the leftmost 1 bit of apositive signed value into the sign bit was undefined made well-defined
CWG 1504 C++98 a pointer to a base class subobject of an arrayelement could be used in pointer arithmetic the behavior isundefined in this case
CWG 1515 C++98 only unsigned integers which declared unsigned should obey the laws of arithmetic modulo 2n applies to all unsigned integers
CWG 1642 C++98 arithmetic operators allow their operands to be lvalues some operands must be rvalues
CWG 1865 C++98 the resolution of CWG issue 1504 made the behaviorsof pointer arithmetic involving pointers to array elementundefined if the pointed-to type and the array elementtype have different cv-qualifications in non-top levels made well-defined
CWG 1971 C++98 it was unclear whether the rule resolving theambiguity of ~ applies to cases such as ~X(0) the rule applies to such cases
CWG 2419 C++98 a pointer to non-array object was only treated as apointer to the first element of an array with size 1in pointer arithmetic if the pointer is obtained by & applies to all pointersto non-array objects
CWG 2626 C++98 the result of built-in operator~ was simply'one's complement' without proper definition the result is phrased in termsof the base-2 representation
CWG 2724 C++20 the rounding direction of arithmetic right shift was unclear made clear
CWG 2853 C++98 a pointer past the end of an object couldnot be added or subtracted with an integer it can

[edit] See also

Operator precedence

Operator overloading

Common operators
assignment increment decrement arithmetic logical comparison member access other
a = ba += ba -= ba *= ba /= ba %= ba &= ba |= ba ^= ba <<= ba >>= b ++a --aa++a-- +a -aa + ba - ba * ba / ba % b~aa & ba | ba ^ ba << ba >> b !aa && ba | b a == ba != ba < ba > ba <= ba >= ba <=> b a[...] *a &aa->ba.ba->*ba.*b
commaa, b
conditionala ? b : c
Special operators
static_cast converts one type to another related type dynamic_cast converts within inheritance hierarchies const_cast adds or removes cv-qualifiers reinterpret_cast converts type to unrelated type C-style cast converts one type to another by a mix of static_cast, const_cast, and reinterpret_cast new creates objects with dynamic storage duration delete destructs objects previously created by the new expression and releases obtained memory area sizeof queries the size of a type sizeof... queries the size of a pack (since C++11) typeid queries the type information of a type noexcept checks if an expression can throw an exception (since C++11) alignof queries alignment requirements of a type (since C++11)