std::atanh(std::complex) - cppreference.com (original) (raw)
| | | | | --------------------------------------------------------------- | | ------------- | | template< class T > complex<T> atanh( const complex<T>& z ); | | (since C++11) |
Computes the complex arc hyperbolic tangent of z with branch cuts outside the interval [−1; +1] along the real axis.
Contents
[edit] Parameters
[edit] Return value
If no errors occur, the complex arc hyperbolic tangent of z is returned, in the range of a half-strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- std::atanh(std::conj(z)) == std::conj(std::atanh(z))
- std::atanh(-z) == -std::atanh(z)
- If z is
(+0,+0), the result is(+0,+0) - If z is
(+0,NaN), the result is(+0,NaN) - If z is
(+1,+0), the result is(+∞,+0)and FE_DIVBYZERO is raised - If z is
(x,+∞)(for any finite positive x), the result is(+0,π/2) - If z is
(x,NaN)(for any finite nonzero x), the result is(NaN,NaN)and FE_INVALID may be raised - If z is
(+∞,y)(for any finite positive y), the result is(+0,π/2) - If z is
(+∞,+∞), the result is(+0,π/2) - If z is
(+∞,NaN), the result is(+0,NaN) - If z is
(NaN,y)(for any finite y), the result is(NaN,NaN)and FE_INVALID may be raised - If z is
(NaN,+∞), the result is(±0,π/2)(the sign of the real part is unspecified) - If z is
(NaN,NaN), the result is(NaN,NaN)
[edit] Notes
Although the C++ standard names this function "complex arc hyperbolic tangent", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic tangent", and, less common, "complex area hyperbolic tangent".
Inverse hyperbolic tangent is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞,-1] and [+1,+∞) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic tangent is atanh z = .
For any z, atanh(z) = .
[edit] Example
Output:
atanh(2.000000,0.000000) = (0.549306,1.570796) atanh(2.000000,-0.000000) (the other side of the cut) = (0.549306,-1.570796) atanh(1.000000,2.000000) = (0.173287,1.178097) atan(-2.000000,1.000000) / i = (0.173287,1.178097)
[edit] See also
| | computes area hyperbolic sine of a complex number (\({\small\operatorname{arsinh}{z}}\)arsinh(z)) (function template) [edit] | | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | | computes area hyperbolic cosine of a complex number (\({\small\operatorname{arcosh}{z}}\)arcosh(z)) (function template) [edit] | | | computes hyperbolic tangent of a complex number (\({\small\tanh{z}}\)tanh(z)) (function template) [edit] | | | computes the inverse hyperbolic tangent (\({\small\operatorname{artanh}{x}}\)artanh(x)) (function) [edit] | | |