std::sinh, std::sinhf, std::sinhl - cppreference.com (original) (raw)

Defined in header
(1)
float sinh ( float num ); double sinh ( double num ); long double sinh ( long double num ); (until C++23)
/*floating-point-type*/ sinh ( /*floating-point-type*/ num ); (since C++23) (constexpr since C++26)
float sinhf( float num ); (2) (since C++11) (constexpr since C++26)
long double sinhl( long double num ); (3) (since C++11) (constexpr since C++26)
SIMD overload (since C++26)
Defined in header
template< /*math-floating-point*/ V > constexpr /*deduced-simd-t*/<V> sinh ( const V& v_num ); (S) (since C++26)
Additional overloads (since C++11)
Defined in header
template< class Integer > double sinh ( Integer num ); (A) (constexpr since C++26)

1-3) Computes the hyperbolic sine of num. The library provides overloads of std::sinh for all cv-unqualified floating-point types as the type of the parameter.(since C++23)

A) Additional overloads are provided for all integer types, which are treated as double. (since C++11)

[edit] Parameters

num - floating-point or integer value

[edit] Return value

If no errors occur, the hyperbolic sine of num (sinh(num), or ) is returned.

If a range error due to overflow occurs, ±HUGE_VAL, ±HUGE_VALF, or ±HUGE_VALL is returned.

If a range error occurs due to underflow, the correct result (after rounding) is returned.

[edit] Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

[edit] Notes

POSIX specifies that in case of underflow, num is returned unmodified, and if that is not supported, and implementation-defined value no greater than DBL_MIN, FLT_MIN, and LDBL_MIN is returned.

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::sinh(num) has the same effect as std::sinh(static_cast<double>(num)).

[edit] Example

#include #include #include #include #include // #pragma STDC FENV_ACCESS ON   int main() { const double x = 42;   std::cout << "sinh(1) = " << std::sinh(1) << '\n' << "sinh(-1) = " << std::sinh(-1) << '\n' << "log(sinh(" << x << ")+cosh(" << x << ")) = " << std::log(std::sinh(x) + std::cosh(x)) << '\n';   // special values std::cout << "sinh(+0) = " << std::sinh(0.0) << '\n' << "sinh(-0) = " << std::sinh(-0.0) << '\n';   // error handling errno = 0; std::feclearexcept(FE_ALL_EXCEPT);   std::cout << "sinh(710.5) = " << std::sinh(710.5) << '\n';   if (errno == ERANGE) std::cout << " errno == ERANGE: " << std::strerror(errno) << '\n'; if (std::fetestexcept(FE_OVERFLOW)) std::cout << " FE_OVERFLOW raised\n"; }

Output:

sinh(1) = 1.1752 sinh(-1) = -1.1752 log(sinh(42)+cosh(42)) = 42 sinh(+0) = 0 sinh(-0) = -0 sinh(710.5) = inf errno == ERANGE: Numerical result out of range FE_OVERFLOW raised

[edit] See also

coshcoshfcoshl(C++11)(C++11) computes hyperbolic cosine (\({\small\cosh{x}}\)cosh(x)) (function) [edit]
tanhtanhftanhl(C++11)(C++11) computes hyperbolic tangent (\({\small\tanh{x}}\)tanh(x)) (function) [edit]
asinhasinhfasinhl(C++11)(C++11)(C++11) computes the inverse hyperbolic sine (\({\small\operatorname{arsinh}{x}}\)arsinh(x)) (function) [edit]
sinh(std::complex) computes hyperbolic sine of a complex number (\({\small\sinh{z}}\)sinh(z)) (function template) [edit]
sinh(std::valarray) applies the function std::sinh to each element of valarray (function template) [edit]
C documentation for sinh