(original) (raw)

{-# LANGUAGE Trustworthy #-} {-# LANGUAGE NoImplicitPrelude #-}


-- Maintainer : libraries@haskell.org -- Stability : experimental -- Portability : portable

-- Simple combinators working solely on and with functions.


module Data.Function ( -- * "Prelude" re-exports id, const, (.), flip, ($) -- * Other combinators , (&) , fix , on ) where

import GHC.Base ( ($), (.), id, const, flip )

infixl 0 [on](Data.Function.html#on) infixl 1 &

-- | @'fix' f@ is the least fixed point of the function @f@, -- i.e. the least defined @x@ such that @f x = x@.

-- For example, we can write the factorial function using direct recursion as

-- >>> let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5 -- 120

-- This uses the fact that Haskell’s @let@ introduces recursive bindings. We can -- rewrite this definition using 'fix',

-- >>> fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5 -- 120

-- Instead of making a recursive call, we introduce a dummy parameter @rec@; -- when used within 'fix', this parameter then refers to 'fix'' argument, hence -- the recursion is reintroduced. fix :: (a -> a) -> a fix f = let x = f x in x

-- | @'on' b u x y@ runs the binary function b /on/ the results of applying unary function u to two arguments x and y. From the opposite perspective, it transforms two inputs and combines the outputs.

-- @((+) `on` f) x y = f x + f y@

-- Typical usage: @'Data.List.sortBy' ('compare' `on` 'fst')@.

-- Algebraic properties:

-- * @() `on` 'id' = () -- (if (*) ∉ {⊥, 'const' ⊥})@

-- * @(() `on` f) `on` g = () `on` (f . g)@

-- * @'flip' on f . 'flip' on g = 'flip' on (g . f)@ on :: (b -> b -> c) -> (a -> b) -> a -> a -> c (.*.) [on](Data.Function.html#on) f = [x](#local-6989586621679048770) y -> f x .*. f y -- Proofs (so that I don't have to edit the test-suite):

-- () on id -- = -- \x y -> id x * id y -- = -- \x y -> x * y -- = { If () /= | or const |. } -- (*)

-- () on f on g -- = -- (() on f) on g -- = -- \x y -> (() on f) (g x) (g y) -- = -- \x y -> (\x y -> f x * f y) (g x) (g y) -- = -- \x y -> f (g x) * f (g y) -- = -- \x y -> (f . g) x * (f . g) y -- = -- () on (f . g) -- = -- (*) on f . g

-- flip on f . flip on g -- = -- (\h () -> () on h) f . (\h () -> () on h) g -- = -- (() -> () on f) . (() -> () on g) -- = -- () -> () on g on f -- = { See above. } -- () -> () on g . f -- = -- (\h () -> () on h) (g . f) -- = -- flip on (g . f)

-- | '&' is a reverse application operator. This provides notational -- convenience. Its precedence is one higher than that of the forward -- application operator '$', which allows '&' to be nested in '$'.

-- >>> 5 & (+1) & show -- "6"

-- @since 4.8.0.0 (&) :: a -> (a -> b) -> b x & f = f x

-- $setup -- >>> import Prelude