Use with Polars (original) (raw)

This document is a quick introduction to using datasets with Polars, with a particular focus on how to process datasets using Polars functions, and how to convert a dataset to Polars or from Polars.

This is particularly useful as it allows fast zero-copy operations, since both datasets and Polars use Arrow under the hood.

Dataset format

By default, datasets return regular Python objects: integers, floats, strings, lists, etc.

To get Polars DataFrames or Series instead, you can set the format of the dataset to polars using Dataset.with_format():

from datasets import Dataset data = {"col_0": ["a", "b", "c", "d"], "col_1": [0., 0., 1., 1.]} ds = Dataset.from_dict(data) ds = ds.with_format("polars") ds[0]
shape: (1, 2) ┌───────┬───────┐ │ col_0 ┆ col_1 │ │ --- ┆ --- │ │ str ┆ f64 │ ╞═══════╪═══════╡ │ a ┆ 0.0 │ └───────┴───────┘ ds[:2]
shape: (2, 2) ┌───────┬───────┐ │ col_0 ┆ col_1 │ │ --- ┆ --- │ │ str ┆ f64 │ ╞═══════╪═══════╡ │ a ┆ 0.0 │ │ b ┆ 0.0 │ └───────┴───────┘ ds["data"]
shape: (4,) Series: 'col_0' [str] [ "a" "b" "c" "d" ]

This also works for IterableDataset objects obtained e.g. using load_dataset(..., streaming=True):

ds = ds.with_format("polars") for df in ds.iter(batch_size=2): ... print(df) ... break shape: (2, 2) ┌───────┬───────┐ │ col_0 ┆ col_1 │ │ --- ┆ --- │ │ str ┆ f64 │ ╞═══════╪═══════╡ │ a ┆ 0.0 │ │ b ┆ 0.0 │ └───────┴───────┘

Process data

Polars functions are generally faster than regular hand-written python functions, and therefore they are a good option to optimize data processing. You can use Polars functions to process a dataset in Dataset.map() or Dataset.filter():

import polars as pl from datasets import Dataset data = {"col_0": ["a", "b", "c", "d"], "col_1": [0., 0., 1., 1.]} ds = Dataset.from_dict(data) ds = ds.with_format("polars") ds = ds.map(lambda df: df.with_columns(pl.col("col_1").add(1).alias("col_2")), batched=True) ds[:2] shape: (2, 3) ┌───────┬───────┬───────┐ │ col_0 ┆ col_1 ┆ col_2 │ │ --- ┆ --- ┆ --- │ │ str ┆ f64 ┆ f64 │ ╞═══════╪═══════╪═══════╡ │ a ┆ 0.0 ┆ 1.0 │ │ b ┆ 0.0 ┆ 1.0 │ └───────┴───────┴───────┘ ds = ds.filter(lambda df: df["col_0"] == "b", batched=True) ds[0] shape: (1, 3) ┌───────┬───────┬───────┐ │ col_0 ┆ col_1 ┆ col_2 │ │ --- ┆ --- ┆ --- │ │ str ┆ f64 ┆ f64 │ ╞═══════╪═══════╪═══════╡ │ b ┆ 0.0 ┆ 1.0 │ └───────┴───────┴───────┘

We use batched=True because it is faster to process batches of data in Polars rather than row by row. It’s also possible to use batch_size= in map() to set the size of each df.

This also works for IterableDataset.map() and IterableDataset.filter().

Example: data extraction

Many functions are available in Polars and for any data type: string, floats, integers, etc. You can find the full list here. Those functions are written in Rust and run on batches of data which enables fast data processing.

Here is an example that shows a 5x speed boost using Polars instead of a regular python function to extract solutions from a LLM reasoning dataset:

from datasets import load_dataset

ds = load_dataset("ServiceNow-AI/R1-Distill-SFT", "v0", split="train")

pattern = re.compile("boxed\{(.*)\}") result_ds = ds.map(lambda x: {"value_solution": m.group(1) if (m:=pattern.search(x["solution"])) else None})

expr = pl.col("solution").str.extract("boxed\{(.*)\}").alias("value_solution") result_ds = ds.with_format("polars").map(lambda df: df.with_columns(expr), batched=True)

Import or Export from Polars

To import data from Polars, you can use Dataset.from_polars():

ds = Dataset.from_polars(df)

And you can use Dataset.to_polars() to export a Dataset to a Polars DataFrame:

df = Dataset.to_polars(ds)

< > Update on GitHub