initialize - Initialize learnable and state parameters of neural network - MATLAB (original) (raw)
Initialize learnable and state parameters of neural network
Since R2021a
Syntax
Description
Tip
Most dlnetwork
objects are initialized by default. You only need to manually initialize a dlnetwork
if it is uninitialized. You can check if a network is initialized using the Initialized
property of thedlnetwork
object.
[netUpdated](#mw%5Fe20890bc-65a0-4676-bc78-ca8b72740f72) = initialize([net](#mw%5F9a743689-7093-4df8-a6e8-44399d76dbc5))
initializes any unset learnable parameters and state values of net
based on the input sizes defined by the network input layers. Any learnable or state parameters that already contain values remain unchanged.
A network with unset, empty values for learnable and state parameters is_uninitialized_. You must initialize an uninitializeddlnetwork
before you can use it. By default, dlnetwork
objects are constructed with initial parameters and do not need initializing.
[netUpdated](#mw%5Fe20890bc-65a0-4676-bc78-ca8b72740f72) = initialize([net](#mw%5F9a743689-7093-4df8-a6e8-44399d76dbc5),[X1,...,XN](#mw%5F3af1d784-472c-4f9b-872d-d8c26929d3e7))
initializes any unset learnable parameters and state values of net
based on the example network inputs or network data layout objects X1,...,XN
. Use this syntax when the network has inputs that are not connected to an input layer.
Examples
Define a simple image classification network as a layer array.
layers = [ imageInputLayer([28 28 1],Normalization="none") convolution2dLayer(5,20) batchNormalizationLayer reluLayer fullyConnectedLayer(10) softmaxLayer];
Convert the layer graph to a dlnetwork
object. Create an uninitialized dlnetwork
object by setting the Initialize
option to false
.
net = dlnetwork(layers,Initialize=false);
View the learnable parameters of the network. Because the network is not initialized, the values are empty.
ans=6×3 table
Layer Parameter Value
___________ _________ ____________
"conv" "Weights" {0×0 double}
"conv" "Bias" {0×0 double}
"batchnorm" "Offset" {0×0 double}
"batchnorm" "Scale" {0×0 double}
"fc" "Weights" {0×0 double}
"fc" "Bias" {0×0 double}
Initialize the learnable parameters of the network using the initialize
function.
View the learnable parameters of the network. Because the network is now initialized, the values are nonempty with sizes inferred using the size of the input layer.
ans=6×3 table
Layer Parameter Value
___________ _________ ___________________
"conv" "Weights" { 5×5×1×20 dlarray}
"conv" "Bias" { 1×1×20 dlarray}
"batchnorm" "Offset" { 1×1×20 dlarray}
"batchnorm" "Scale" { 1×1×20 dlarray}
"fc" "Weights" {10×11520 dlarray}
"fc" "Bias" {10×1 dlarray}
Define a multi-input image classification network.
numFilters = 24;
net = dlnetwork;
layersBranch1 = [ convolution2dLayer(3,6*numFilters,Padding="same",Stride=2) groupNormalizationLayer("all-channels") reluLayer convolution2dLayer(3,numFilters,Padding="same") groupNormalizationLayer("channel-wise") additionLayer(2,Name="add") reluLayer fullyConnectedLayer(10) softmaxLayer];
layersBranch2 = [ convolution2dLayer(1,numFilters,Name="conv_branch") groupNormalizationLayer("all-channels",Name="groupnorm_branch")];
net = addLayers(net, layersBranch1); net = addLayers(net,layersBranch2); net = connectLayers(net,"groupnorm_branch","add/in2");
Visualize the layers in a plot.
View the learnable parameters of the network. Because the network is not initialized, the values are empty.
ans=14×3 table
Layer Parameter Value
__________________ _________ ____________
"conv_1" "Weights" {0×0 double}
"conv_1" "Bias" {0×0 double}
"groupnorm_1" "Offset" {0×0 double}
"groupnorm_1" "Scale" {0×0 double}
"conv_2" "Weights" {0×0 double}
"conv_2" "Bias" {0×0 double}
"groupnorm_2" "Offset" {0×0 double}
"groupnorm_2" "Scale" {0×0 double}
"fc" "Weights" {0×0 double}
"fc" "Bias" {0×0 double}
"conv_branch" "Weights" {0×0 double}
"conv_branch" "Bias" {0×0 double}
"groupnorm_branch" "Offset" {0×0 double}
"groupnorm_branch" "Scale" {0×0 double}
View the names of the network inputs.
ans = 1×2 cell {'conv_1'} {'conv_branch'}
Create random dlarray
objects representing inputs to the network. Use an example input of size 64-by-64 with 3 channels for the main branch of the network. Use an input of size 64-by-64 with 18 channels for the second branch.
inputSize = [64 64 3]; inputSizeBranch = [32 32 18];
X1 = dlarray(rand(inputSize),"SSCB"); X2 = dlarray(rand(inputSizeBranch),"SSCB");
Initialize the learnable parameters of the network using the initialize
function and specify the example inputs. Specify the inputs with order corresponding to the InputNames
property of the network.
net = initialize(net,X1,X2);
View the learnable parameters of the network. Because the network is now initialized, the values are nonempty with sizes inferred using the size of the input data.
ans=14×3 table
Layer Parameter Value
__________________ _________ _____________________
"conv_1" "Weights" { 3×3×3×144 dlarray}
"conv_1" "Bias" { 1×1×144 dlarray}
"groupnorm_1" "Offset" { 1×1×144 dlarray}
"groupnorm_1" "Scale" { 1×1×144 dlarray}
"conv_2" "Weights" { 3×3×144×24 dlarray}
"conv_2" "Bias" { 1×1×24 dlarray}
"groupnorm_2" "Offset" { 1×1×24 dlarray}
"groupnorm_2" "Scale" { 1×1×24 dlarray}
"conv_branch" "Weights" { 1×1×18×24 dlarray}
"conv_branch" "Bias" { 1×1×24 dlarray}
"groupnorm_branch" "Offset" { 1×1×24 dlarray}
"groupnorm_branch" "Scale" { 1×1×24 dlarray}
"fc" "Weights" {10×24576 dlarray}
"fc" "Bias" {10×1 dlarray}
Create an uninitialized dlnetwork
object that has two unconnected inputs.
layers = [ convolution2dLayer(5,16,Name="conv") batchNormalizationLayer reluLayer fullyConnectedLayer(50) flattenLayer concatenationLayer(1,2,Name="cat") fullyConnectedLayer(10) softmaxLayer];
net = dlnetwork(layers,Initialize=false);
View the input names of the network.
ans = 1×2 cell {'conv'} {'cat/in2'}
Create network data layout objects that represent input data for the inputs. For the first input, specify a batch of 28-by-28 grayscale images. For the second input specify a batch of single-channel feature data.
layout1 = networkDataLayout([28 28 1 NaN],"SSCB"); layout2 = networkDataLayout([1 NaN],"CB");
Initialize the network using the network data layout objects.
net = initialize(net,layout1,layout2)
net = dlnetwork with properties:
Layers: [8×1 nnet.cnn.layer.Layer]
Connections: [7×2 table]
Learnables: [8×3 table]
State: [2×3 table]
InputNames: {'conv' 'cat/in2'}
OutputNames: {'softmax'}
Initialized: 1
View summary with summary.
Input Arguments
Uninitialized network, specified as a dlnetwork
object.
Example network inputs or data layouts to use to determine the size and formats of learnable and state parameters, each specified as one of these values:
- Formatted dlarray object
- Formatted networkDataLayout object
- Unformatted dlarray object (since R2025a)
- Unformatted networkDataLayout object (since R2025a)
The software propagates X1,...XN
through the network to determine the appropriate sizes and formats of the learnable and state parameters of thedlnetwork
object and initializes any unset learnable or state parameters.
To create a neural network that receives unformatted data, use an inputLayer object and do not specify a format. (since R2025a)
Before R2025a: X1,...XN
must be formatteddlarray
or networkDataLayout
objects.
Provide example inputs in the same order as the order specified by theInputNames
property of the input network.
Note
Automatic initialization uses only the size and format information of the input data. For initialization that depends on the values on the input data, you must initialize the learnable parameters manually.
Output Arguments
Initialized network, returned as an initialized dlnetwork
object.
The initialize
function does not preserve quantization information. If the input network is a quantized network, then the output network does not contain quantization information.
Version History
Introduced in R2021a
Initialize neural networks with unformatted data by specifying the inputs X1,...,XN
as unformatted dlarray
or unformatted networkDataLayout
objects.
Input layers such as imageInputLayer and sequenceInputLayer contain properties that networks use for data normalization. These properties are Mean
,StandardDeviation
, Min
, andMax
. The software uses these properties to apply the data normalization method defined by the Normalization
property of the layer.
Starting in R2023b, when you initialize a network by creating an initialized dlnetwork or by using the initialize function, the software initializes the Mean
,StandardDeviation
, Min
, andMax
properties of input layers if you do not set them when you create the layer and if the normalization method requires them. For normalization methods that use two properties, for example, zscore
, the software initializes those properties only if you do not set either property when you create the layer.
- For
zerocenter
normalization,Mean
is initialized to0
. - For
zscore
normalization,Mean
is initialized to0
andStandardDeviation
is initialized to1
. - For
rescale-symmetric
normalization,Min
is initialized to-1
andMax
is initialized to1
. - For
rescale-zero-one
normalization,Min
is initialized to0
andMax
is initialized to1
.
By default, the software automatically calculates the normalization statistics during training. To customize the normalization, set the Mean
,StandardDeviation
, Min
, andMax
properties of input layers manually.
In previous releases, the software errors when you initialize a network containing an input layer that uses a normalization method requiring properties that you do not specify when you create the layer.