codistributor1d - 1-D distribution scheme for codistributed array - MATLAB (original) (raw)

1-D distribution scheme for codistributed array

Description

Use a codistributor1d object to define the one-dimensional distribution scheme for a codistributed array. The one-dimensional codistributor distributes arrays along a single specified dimension, the distribution dimension, in a noncyclic, partitioned manner.

Creation

Syntax

Description

`codist` = codistributor1d returns acodistributor1d object using the default dimension and partition. The default dimension is the last nonsingleton dimension of the codistributed array. The default partition distributes the array along the default dimension as evenly as possible.

`codist` = codistributor1d(`Dimension`) returns a 1-D codistributor object for distribution along the dimension specified by theDimension property. For example, if Dimension is 1, the function distributes the object along rows.

example

`codist` = codistributor1d(`Dimension`,`Partition`) also returns a 1-D codistributor object for distribution according to the partition vector specified by the Partition property. For example, C1 = codistributor1d(1,[1,2,3,4]) distributes an array of 10 rows to four workers, with one row to the first worker, two rows to the second worker, three rows to the third worker, and four rows to the fourth worker.

The resulting codistributor of any of the above syntaxes is incomplete because its global size is not specified. Use a codistributor constructed this way as an argument to other functions as a template codistributor when creating codistributed arrays.

`codist` = codistributor1d(`Dimension`,`Partition`,[gsize](#mw%5F747056de-57d8-4101-9b2f-18d15bafa543)) returns a codistributor object with the global size gsize.

You can use the resulting codistributor object to build a codistributed array from its local parts with codistributed.build. To use a default dimension, specify codistributor1d.unsetDimension for the Dimension property; the function derives the distribution dimension from gsize and selects the last nonsingleton dimension as the default dimension. Similarly, to use a default partition, specify codistributor1d.unsetPartition for thePartition property; the function derives the default partition from the global size and distribution dimension.

The local part on worker workerIndex of a codistributed array using such a codistributor is of size gsize in all dimensions except dimension, where the size ispart(workerIndex). The local part has the same class and attributes as the overall codistributed array. The overall global array can be reconstructed by concatenating the various local parts along dimensiondimension.

example

Input Arguments

expand all

Global size of the codistributed array, specified as an integer.

Properties

expand all

Distribution dimension, specified as a scalar integer. The distribution dimension specifies the dimension over which you distribute the codistributed array.

Partitioning vector, specified as an integer row vector. The partitioning vector specifies the distribution of the codistributed array to the workers.

Object Functions

codistributed.cell Create codistributed cell array
codistributed.colon Distributed colon operation
codistributed.spalloc Allocate space for sparse codistributed matrix
codistributed.speye Create codistributed sparse identity matrix
codistributed.sprand Create codistributed sparse array of uniformly distributed pseudo-random values
codistributed.sprandn Create codistributed sparse array of normally distributed pseudo-random values
eye Create codistributed identity matrix
false Create codistributed array of logical 0 (false)
globalIndices Global indices for local part of codistributed array
Inf Create codistributed array of all Inf values
isComplete True if codistributor object is complete
NaN Create codistributed array of all NaN values
ones Create codistributed array of all ones
rand Create codistributed array of uniformly distributed random numbers
randn Create codistributed array of normally distributed random numbers
sparse Create codistributed sparse matrix
true Create codistributed array of logical 1 (true)
zeros Create codistributed array of all zeros

Examples

collapse all

Use a codistributor1d object to create anN-by-N matrix of ones, distributed by rows.

N = 1000; spmd codistr = codistributor1d(1); % 1st dimension (rows) C = ones(N,codistr); end

Use a fully specified codistributor1d object to create a N-by-N codistributed matrix from its local parts. Then visualize which elements are stored on worker 2.

Start with full sized array on each worker then set myLocalSize to default part of whole array.

N = 1000; spmd codistr = codistributor1d( ... codistributor1d.unsetDimension, ... codistributor1d.unsetPartition, ... [N N]); myLocalSize = [N N]; % myLocalSize(codistr.Dimension) = codistr.Partition(spmdIndex); myLocalPart = spmdIndex*ones(myLocalSize); D = codistributed.build(myLocalPart,codistr); end spy(D==2);

Version History

Introduced in R2009b