predictObjective - Predict objective function at a set of points - MATLAB (original) (raw)
Predict objective function at a set of points
Syntax
Description
[objective](#bvbelbm-objective) = predictObjective([results](#bvbelbm%5Fsep%5Fshared-results),[XTable](#bvbelbm%5Fsep%5Fshared-XTable))
returns the estimated objective function value at the points inXTable
.
[[objective](#bvbelbm-objective),[sigma](#bvbelbm-sigma)] = predictObjective([results](#bvbelbm%5Fsep%5Fshared-results),[XTable](#bvbelbm%5Fsep%5Fshared-XTable))
also returns estimated standard deviations.
Examples
This example shows how to estimate the cross-validation loss of an optimized classifier.
Optimize a KNN classifier for the ionosphere
data, meaning find parameters that minimize the cross-validation loss. Minimize over nearest-neighborhood sizes from 1 to 30, and over the distance functions 'chebychev'
, 'euclidean'
, and 'minkowski'
.
For reproducibility, set the random seed, and set the AcquisitionFunctionName
option to 'expected-improvement-plus'
.
load ionosphere rng default num = optimizableVariable('n',[1,30],'Type','integer'); dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical'); c = cvpartition(351,'Kfold',5); fun = @(x)kfoldLoss(fitcknn(X,Y,'CVPartition',c,'NumNeighbors',x.n,... 'Distance',char(x.dst),'NSMethod','exhaustive')); results = bayesopt(fun,[num,dst],'Verbose',0,... 'AcquisitionFunctionName','expected-improvement-plus');
Create a table of points to estimate.
b = categorical({'chebychev','euclidean','minkowski'}); n = [1;1;1;4;2;2]; dst = [b(1);b(2);b(3);b(1);b(1);b(3)]; XTable = table(n,dst);
Estimate the objective and standard deviation of the objective at these points.
[objective,sigma] = predictObjective(results,XTable); [XTable,table(objective,sigma)]
ans=6×4 table
n dst objective sigma
_ _________ _________ _________
1 chebychev 0.12132 0.0068029
1 euclidean 0.14052 0.0079128
1 minkowski 0.14057 0.0079117
4 chebychev 0.1227 0.0068805
2 chebychev 0.12176 0.0066739
2 minkowski 0.1437 0.0075448
Input Arguments
Prediction points, specified as a table with D columns, where D is the number of variables in the problem. The function performs its predictions on these points.
Data Types: table
Output Arguments
Objective estimates, returned as anN
-by-1
vector, whereN
is the number of rows ofXTable. The estimates are the mean values of the posterior distribution of the Gaussian process model of the objective function.
Standard deviations of objective function, returned as anN
-by-1
vector, whereN
is the number of rows ofXTable. The standard deviations are those of the posterior distribution of the Gaussian process model of the objective function.
Version History
Introduced in R2016b