H-Iロケット (original) (raw)

H-Iロケット(エイチワンロケット、エイチいちロケット)は、宇宙開発事業団(NASDA)と三菱重工業N-IロケットN-IIロケットに続いて開発し、三菱重工業が製造した人工衛星打上げ用液体燃料ロケットである。名称の頭文字「H」は水素元素記号に由来し、第2段の燃料に液体水素を使用することから名付けられた[2]

Nロケットに引き続き、一部がブラックボックスの条件で米国デルタロケットの技術を導入し開発された。第2段と第3段ロケットや慣性誘導装置を国産化しており、デルタロケットの技術導入を行った3種類のロケットの中では国産比率が最も高く、N-IIでは54%から61%だった国産化率がH-Iでは78%から98%まで向上した。次世代のH-IIロケットへの重要なステップとなったが、第1段が自主技術で開発したものではないために、N-IやN-IIと同様にデルタロケットの亜種として分類される。名称はH-IIと類似しているが、N-IIと共通の第1段を用いている等、技術的な類似点はN-IIの方が多い。

第2段用に液体酸素液体水素推進剤とするLE-5型エンジンを自主技術で開発できたことは、次世代のH-IIロケットの第1段用LE-7型エンジンの実現に道筋をつけた点で意義が大きい。LE-7の実用化にはそれにもかかわらず大変な努力を要したわけであるが、LE-5の経験が無ければさらに難易度が高くなったといえる。

1981年(昭和56年)に開発が開始され[3]1986年(昭和61年)8月13日にH-I試験機(第1号機)の打ち上げに成功、1992年(平成4年)まで合計9機を打ち上げ、すべて成功した。これにより「さくら」「ひまわり」「ゆり」など実用静止衛星の打上げを順調にこなし、さらに複数衛星の同時打上げの技術習得も行った。

関係機関の一部ではH-IAとも呼称されていたこともあり、後継として静止軌道に800kgの打上げ能力をもつH-IBロケット(後述)を開発する予定であった。しかし、2t級静止衛星の需要増加や国内技術の進歩のために計画を発展的に解消し、H-IIロケットの開発へと移行することになった[4]

Nロケットの打ち上げ能力不足を背景として1975年(昭和50年)から以下のような基本的な枠組みの元に調査研究が開始された。

  1. 昭和60年代初頭から10年以上主力機として使用することが可能であること。
  2. 静止軌道上に500から800kgの人工衛星を打ち上げることが可能であること。
  3. 昭和60年代後半の宇宙輸送系の技術基盤を蓄積できるものであること。
  4. 原則として自主技術を用いること。

この研究において上段の構成要素はほぼ決定されていたが、第1段をどういったものにするかが争点となった。第1段を新規開発するのであれば開発計画に間に合わず、N-IIの流用とすると新規開発要素が少ないために開発計画には間に合うが打ち上げ能力が計画値の下限にとなる等、それぞれ問題があった。最終的にはN-IIの第1段を流用した500kg級のロケットH-IA(後のH-Iに該当)をまず開発し、その後800kgまで能力を増強したH-IBを開発するという計画に落ち着いた(後にH-IBは計画中止)[5]

H-I

主要諸元

さらに見る 諸元\各段, 第1段 ...

主要諸元一覧[5]

諸元\各段 第1段 補助ロケット 第2段 第3段 フェアリング
寸法 長さ(m) 22.44 7.25 10.32 2.34 7.91
全長(m) 40.3
外径(m) 2.44 0.79 2.49 1.34 2.44
重量 各段全備重量(t) 85.8(段間部含む) 40.3(9本) 10.6 2.2 0.6
全段重量(t) 139.9(衛星除く)
エンジン 名称 MB-3-3 キャスターII LE-5 UM-129A N/A
型式 液体ロケット 固体ロケット 液体ロケット 固体ロケット
推進薬種類(酸化剤/燃料) LOX/RJ-1 HTPB LOX/LH2 HTPB
推進薬重量(t) 81.4 33.6(9本) 8.8 1.8
比推力(s) 249(海面上) 238(海面上) 442(真空中) 288(真空中)
平均推力(tf) 78.0(海面上) 22.5(海面上)(1本分) 10.5(真空中) 7.9(真空中)
燃焼時間(s) 273 38 364 66
推進薬供給方式 ターボポンプ N/A ターボポンプ N/A
制御システム ピッチヨー ジンバル N/A ジンバル(推力飛行中)ガスジェット(慣性飛行中) スピン安定 N/A
ロール バーニアエンジン ガスジェット

閉じる

構成

LE-5エンジン展示モデル

3段式の液体+固体ロケット

注:LEO:低軌道、GSO:静止軌道

Hロケットの開発計画において800kgの静止衛星打上げ能力をもつロケットとして計画されていたのがH-IBロケットである。固体補助ロケットのキャスターIVクラスへの大型化、MB-3-3エンジンのクラスタ化、新大型第1段エンジンの開発、推力偏向機能付大型固体補助ロケットを採用する等、幅広く検討が行われ、第3段をLOX/LH2エンジンに置き換える案が有力となった[5]。第3段を置き換える案は詳細な設計検討まで行われ、1989年の試験1号機打ち上げを目指していた[6]。しかし、急速な2t級静止衛星の需要増加により、1982年(昭和57年)頃に計画はH-IIロケットへと発展的に解消する方向性が示され、最終的に1984年(昭和59年)2月の宇宙開発政策大綱改訂によって書類上からも計画は消滅した。

主要諸元

第3段LOX/LH2エンジン

A案(ペリジ・アポジキックステージ)

B案(ペリジキックステージ)

その他の変更点

フェアリング

第3段の直径増大に伴って直径3mのフェアリングを使用する予定であった。

第1段制御部

3mフェアリングの採用によって飛翔時の外乱が増加し、最悪の場合には第1段の制御能力を上回ることが指摘された。これによって第1段制御能力の向上が検討され、メインエンジンジンバル舵角限界の改善及びロードリリーフ制御系の採用が決定された。

H-Iロケットの実物大展示模型が、1989年3月から宮崎科学技術館に設置されている。


  1. 日本航空宇宙学会誌 第36巻 第418号 「H-Iロケット」 - 十亀英司 1988年11月
  2. 宇宙開発事業団技術報告 TR-17 「後段階H-Iロケットのシステム研究」 : 3段に液酸・液水ステージを使用した場合 - 渡辺篤太郎, 柴藤羊二, 田中俊輔, 只川嗣朗, 永井啓一, 鈴木秀人, 加山昭, 五代富文, 松田敬 / 1983年5月