LLVM: lib/Target/BPF/BPFISelLowering.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
33
34using namespace llvm;
35
36#define DEBUG_TYPE "bpf-lower"
37
40 cl::desc("Expand memcpy into load/store pairs in order"));
41
44 cl::desc("Set minimum number of entries to use a jump table on BPF"));
45
48 std::string Str;
49 if (Val) {
51 Val->print(OS);
52 OS << ' ';
53 }
57}
58
62
63
67
68
70
72
76
79
81
85
89
90
91
92
93 for (auto VT : {MVT::i8, MVT::i16, MVT::i32}) {
94 if (VT == MVT::i32) {
96 continue;
97 } else {
99 }
100
106 }
107
108 for (auto VT : {MVT::i32, MVT::i64}) {
111 }
112
113 for (auto VT : { MVT::i32, MVT::i64 }) {
114 if (VT == MVT::i32 && !STI.getHasAlu32())
115 continue;
116
122 }
137
141 }
142
147 }
148
154 }
155
156
161
166 }
167 }
168
172
173
176
178
179
180
181
182
183
184
185
186
187
188
193 } else {
194
195 unsigned CommonMaxStores =
197
202 }
203
204
209
211}
212
215 unsigned *Fast) const {
216
217 if (!AllowsMisalignedMemAccess)
218 return false;
219
220
222 return false;
223
224
226 *Fast = true;
227
228 return true;
229}
230
234
235bool BPFTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
237 return false;
240 return NumBits1 > NumBits2;
241}
242
243bool BPFTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
245 return false;
248 return NumBits1 > NumBits2;
249}
250
251bool BPFTargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
253 return false;
256 return NumBits1 == 32 && NumBits2 == 64;
257}
258
259bool BPFTargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
261 return false;
264 return NumBits1 == 32 && NumBits2 == 64;
265}
266
267bool BPFTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
272 if ((MT1 == MVT::i8 || MT1 == MVT::i16 || MT1 == MVT::i32) &&
273 (MT2 == MVT::i32 || MT2 == MVT::i64))
274 return true;
275 }
277}
278
282
285 if (Constraint.size() == 1) {
286 switch (Constraint[0]) {
287 default:
288 break;
289 case 'w':
291 }
292 }
293
295}
296
297std::pair<unsigned, const TargetRegisterClass *>
300 MVT VT) const {
301 if (Constraint.size() == 1) {
302
303 switch (Constraint[0]) {
304 case 'r':
305 return std::make_pair(0U, &BPF::GPRRegClass);
306 case 'w':
307 if (HasAlu32)
308 return std::make_pair(0U, &BPF::GPR32RegClass);
309 break;
310 default:
311 break;
312 }
313 }
314
316}
317
318void BPFTargetLowering::ReplaceNodeResults(
320 const char *Msg;
321 uint32_t Opcode = N->getOpcode();
322 switch (Opcode) {
323 default:
325 case ISD::ATOMIC_LOAD_ADD:
326 case ISD::ATOMIC_LOAD_AND:
327 case ISD::ATOMIC_LOAD_OR:
328 case ISD::ATOMIC_LOAD_XOR:
329 case ISD::ATOMIC_SWAP:
330 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
331 if (HasAlu32 || Opcode == ISD::ATOMIC_LOAD_ADD)
332 Msg = "unsupported atomic operation, please use 32/64 bit version";
333 else
334 Msg = "unsupported atomic operation, please use 64 bit version";
335 break;
336 case ISD::ATOMIC_LOAD:
337 case ISD::ATOMIC_STORE:
338 return;
339 }
340
342
343
345}
346
348 switch (Op.getOpcode()) {
349 default:
351 case ISD::BR_CC:
352 return LowerBR_CC(Op, DAG);
354 return LowerJumpTable(Op, DAG);
356 return LowerGlobalAddress(Op, DAG);
358 return LowerConstantPool(Op, DAG);
360 return LowerBlockAddress(Op, DAG);
362 return LowerSELECT_CC(Op, DAG);
365 return LowerSDIVSREM(Op, DAG);
366 case ISD::DYNAMIC_STACKALLOC:
367 return LowerDYNAMIC_STACKALLOC(Op, DAG);
368 case ISD::ATOMIC_LOAD:
369 case ISD::ATOMIC_STORE:
370 return LowerATOMIC_LOAD_STORE(Op, DAG);
371 case ISD::TRAP:
372 return LowerTRAP(Op, DAG);
373 }
374}
375
376
377#include "BPFGenCallingConv.inc"
378
379SDValue BPFTargetLowering::LowerFormalArguments(
383 switch (CallConv) {
384 default:
388 break;
389 }
390
393
394
396 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
397 CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);
398
399 bool HasMemArgs = false;
400 for (size_t I = 0; I < ArgLocs.size(); ++I) {
401 auto &VA = ArgLocs[I];
402
403 if (VA.isRegLoc()) {
404
405 EVT RegVT = VA.getLocVT();
407 switch (SimpleTy) {
408 default: {
409 std::string Str;
410 {
413 }
415 }
416 case MVT::i32:
417 case MVT::i64:
419 SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
420 RegInfo.addLiveIn(VA.getLocReg(), VReg);
422
423
424
431
434
436
437 break;
438 }
439 } else {
440 if (VA.isMemLoc())
441 HasMemArgs = true;
442 else
445 }
446 }
447 if (HasMemArgs)
448 fail(DL, DAG, "stack arguments are not supported");
449 if (IsVarArg)
450 fail(DL, DAG, "variadic functions are not supported");
452 fail(DL, DAG, "aggregate returns are not supported");
453
454 return Chain;
455}
456
457const size_t BPFTargetLowering::MaxArgs = 5;
458
464
467 const uint32_t *BaseRegMask) {
470 memcpy(RegMask, BaseRegMask, sizeof(RegMask[0]) * RegMaskSize);
471 return RegMask;
472}
473
476 SelectionDAG &DAG = CLI.DAG;
477 auto &Outs = CLI.Outs;
478 auto &OutVals = CLI.OutVals;
479 auto &Ins = CLI.Ins;
484 bool IsVarArg = CLI.IsVarArg;
486
487
488 IsTailCall = false;
489
490 switch (CallConv) {
491 default:
492 report_fatal_error("unsupported calling convention: " + Twine(CallConv));
495 break;
496 }
497
498
500 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
501
502 CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);
503
504 unsigned NumBytes = CCInfo.getStackSize();
505
506 if (Outs.size() > MaxArgs)
507 fail(CLI.DL, DAG, "too many arguments", Callee);
508
509 for (auto &Arg : Outs) {
510 ISD::ArgFlagsTy Flags = Arg.Flags;
511 if (.isByVal())
512 continue;
513 fail(CLI.DL, DAG, "pass by value not supported", Callee);
514 break;
515 }
516
519
521
522
523 for (size_t i = 0; i < std::min(ArgLocs.size(), MaxArgs); ++i) {
524 CCValAssign &VA = ArgLocs[i];
525 SDValue &Arg = OutVals[i];
526
527
529 default:
532 break;
535 break;
538 break;
541 break;
542 }
543
544
547 else
549 }
550
552
553
554
555
556 for (auto &Reg : RegsToPass) {
559 }
560
561
562
563
566 G->getOffset(), 0);
568 if (StringRef(E->getSymbol()) != BPF_TRAP) {
571 Twine("A call to built-in function '" + StringRef(E->getSymbol()) +
572 "' is not supported."));
573 }
574 }
575
576
577 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
579 Ops.push_back(Chain);
580 Ops.push_back(Callee);
581
582
583
584 for (auto &Reg : RegsToPass)
586
587 bool HasFastCall =
590 if (HasFastCall) {
593 for (auto const &RegPair : RegsToPass)
598 } else {
599 Ops.push_back(
601 }
602
604 Ops.push_back(InGlue);
605
606 Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
608
610
611
612 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, CLI.DL);
614
615
616
617 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, CLI.DL, DAG,
618 InVals);
619}
620
623 bool IsVarArg,
627 unsigned Opc = BPFISD::RET_GLUE;
628
629
632
633
634 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
635
637 fail(DL, DAG, "aggregate returns are not supported");
638 return DAG.getNode(Opc, DL, MVT::Other, Chain);
639 }
640
641
642 CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
643
646
647
648 for (size_t i = 0; i != RVLocs.size(); ++i) {
649 CCValAssign &VA = RVLocs[i];
652
654
655
656
659 }
660
661 RetOps[0] = Chain;
662
663
665 RetOps.push_back(Glue);
666
667 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
668}
669
670SDValue BPFTargetLowering::LowerCallResult(
674
676
678 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
679
680 if (Ins.size() > 1) {
681 fail(DL, DAG, "only small returns supported");
682 for (auto &In : Ins)
685 }
686
687 CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);
688
689
690 for (auto &Val : RVLocs) {
692 Val.getValVT(), InGlue).getValue(1);
695 }
696
697 return Chain;
698}
699
701 switch (CC) {
702 default:
703 break;
710 break;
711 }
712}
713
717 "unsupported signed division, please convert to unsigned div/mod.");
718 return DAG.getUNDEF(Op->getValueType(0));
719}
720
721SDValue BPFTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
724 fail(DL, DAG, "unsupported dynamic stack allocation");
725 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
727}
728
730 SDValue Chain = Op.getOperand(0);
736
739
740 return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
742}
743
747 SDValue TrueV = Op.getOperand(2);
748 SDValue FalseV = Op.getOperand(3);
751
754
757
758 return DAG.getNode(BPFISD::SELECT_CC, DL, Op.getValueType(), Ops);
759}
760
765
769 "sequentially consistent (seq_cst) "
770 "atomic load/store is not supported");
771
772 return Op;
773}
774
776 if (auto *Fn = M->getFunction(BPF_TRAP))
777 return Fn;
778
785
786 if (M->debug_compile_units().empty())
787 return NewF;
788
796 DINode::FlagZero, DISubprogram::SPFlagZero);
798 return NewF;
799}
800
803 TargetLowering::CallLoweringInfo CLI(DAG);
807
818 return LowerCall(CLI, InVals);
819}
820
823 return getAddr(N, DAG);
824}
825
829 N->getOffset(), Flags);
830}
831
836
837template
839 unsigned Flags) const {
841
843
844 return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
845}
846
850 if (N->getOffset() != 0)
852 Twine(N->getOffset()));
853
854 const GlobalValue *GVal = N->getGlobal();
856
857
859
860
862}
863
867
868 return getAddr(N, DAG);
869}
870
875
876
878
879
881}
882
883unsigned
887 const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
888 int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
889 MachineFunction *F = BB->getParent();
891
892 MachineRegisterInfo &RegInfo = F->getRegInfo();
893
897 return PromotedReg0;
898 }
902 if (HasMovsx) {
904 } else {
910 }
911
912 return PromotedReg2;
913}
914
916BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
918 const {
919 MachineFunction *MF = MI.getParent()->getParent();
921 MachineInstrBuilder MIB(*MF, MI);
922 unsigned ScratchReg;
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939 ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
940 MIB.addReg(ScratchReg,
942
943 return BB;
944}
945
946MachineBasicBlock *BPFTargetLowering::EmitInstrWithCustomInserterLDimm64(
948 MachineFunction *MF = BB->getParent();
949 const BPFInstrInfo *TII = MF->getSubtarget().getInstrInfo();
950 const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
951 MachineRegisterInfo &RegInfo = MF->getRegInfo();
953
954
955 DenseMap<const BasicBlock *, MachineBasicBlock *> AddressTakenBBs;
956 for (MachineBasicBlock &MBB : *MF) {
959 AddressTakenBBs[BB] = &MBB;
960 }
961
962 MachineOperand &MO = MI.getOperand(1);
964
965 MCRegister ResultReg = MI.getOperand(0).getReg();
967
968 std::vector<MachineBasicBlock *> Targets;
969 unsigned JTI;
970
973 MachineBasicBlock *TgtMBB = AddressTakenBBs[BA->getBasicBlock()];
975
976 Targets.push_back(TgtMBB);
978 ->createJumpTableIndex(Targets);
979
985 MI.eraseFromParent();
986 return BB;
987 }
988
989
990 auto emitLDImm64 = [&](const GlobalValue *GV = nullptr, unsigned JTI = -1) {
991 auto MIB = BuildMI(*BB, MI, DL, TII->get(BPF::LD_imm64), ResultReg);
992 if (GV)
993 MIB.addGlobalAddress(GV);
994 else
995 MIB.addJumpTableIndex(JTI);
996 MI.eraseFromParent();
997 return BB;
998 };
999
1000
1001 const GlobalValue *GVal = MO.getGlobal();
1003
1005 !GV->isConstant() || !GV->hasInitializer())
1006 return emitLDImm64(GVal);
1007
1009 if (!CA)
1010 return emitLDImm64(GVal);
1011
1012 for (const Use &Op : CA->operands()) {
1014 return emitLDImm64(GVal);
1016 MachineBasicBlock *TgtMBB = AddressTakenBBs[BA->getBasicBlock()];
1018 Targets.push_back(TgtMBB);
1019 }
1020
1022 ->createJumpTableIndex(Targets);
1023 return emitLDImm64(nullptr, JTI);
1024}
1025
1031 unsigned Opc = MI.getOpcode();
1032 bool isSelectRROp = (Opc == BPF::Select ||
1033 Opc == BPF::Select_64_32 ||
1034 Opc == BPF::Select_32 ||
1035 Opc == BPF::Select_32_64);
1036
1037 bool isMemcpyOp = Opc == BPF::MEMCPY;
1038 bool isLDimm64Op = Opc == BPF::LDIMM64;
1039
1040#ifndef NDEBUG
1041 bool isSelectRIOp = (Opc == BPF::Select_Ri ||
1042 Opc == BPF::Select_Ri_64_32 ||
1043 Opc == BPF::Select_Ri_32 ||
1044 Opc == BPF::Select_Ri_32_64);
1045
1046 if (!(isSelectRROp || isSelectRIOp || isMemcpyOp || isLDimm64Op))
1048#endif
1049
1050 if (isMemcpyOp)
1051 return EmitInstrWithCustomInserterMemcpy(MI, BB);
1052
1053 if (isLDimm64Op)
1054 return EmitInstrWithCustomInserterLDimm64(MI, BB);
1055
1056 bool is32BitCmp = (Opc == BPF::Select_32 ||
1057 Opc == BPF::Select_32_64 ||
1058 Opc == BPF::Select_Ri_32 ||
1059 Opc == BPF::Select_Ri_32_64);
1060
1061
1062
1063
1064
1067
1068
1069
1070
1071
1072
1077
1080
1081
1085
1088
1089
1090 int CC = MI.getOperand(3).getImm();
1091 int NewCC;
1092 switch (CC) {
1093#define SET_NEWCC(X, Y) \
1094 case ISD::X: \
1095 if (is32BitCmp && HasJmp32) \
1096 NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
1097 else \
1098 NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
1099 break
1110 default:
1112 }
1113
1114 Register LHS = MI.getOperand(1).getReg();
1115 bool isSignedCmp = (CC == ISD::SETGT ||
1119
1120
1121
1122
1123
1124
1125
1126
1127 if (is32BitCmp && !HasJmp32)
1128 LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);
1129
1130 if (isSelectRROp) {
1131 Register RHS = MI.getOperand(2).getReg();
1132
1133 if (is32BitCmp && !HasJmp32)
1134 RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);
1135
1137 } else {
1138 int64_t imm32 = MI.getOperand(2).getImm();
1139
1144 }
1145
1146
1147
1148
1149 BB = Copy0MBB;
1150
1151
1153
1154
1155
1156
1157 BB = Copy1MBB;
1158 BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
1159 .addReg(MI.getOperand(5).getReg())
1161 .addReg(MI.getOperand(4).getReg())
1163
1164 MI.eraseFromParent();
1165 return BB;
1166}
1167
1169 EVT VT) const {
1170 return getHasAlu32() ? MVT::i32 : MVT::i64;
1171}
1172
1174 EVT VT) const {
1175 return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
1176}
1177
1178bool BPFTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1180 unsigned AS,
1182
1183 if (AM.BaseGV)
1184 return false;
1185
1186 switch (AM.Scale) {
1187 case 0:
1188 break;
1189 case 1:
1190 if (!AM.HasBaseReg)
1191 break;
1192 return false;
1193 default:
1194 return false;
1195 }
1196
1197 return true;
1198}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
const TargetInstrInfo & TII
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static uint32_t * regMaskFromTemplate(const TargetRegisterInfo *TRI, MachineFunction &MF, const uint32_t *BaseRegMask)
Definition BPFISelLowering.cpp:465
static Function * createBPFUnreachable(Module *M)
Definition BPFISelLowering.cpp:775
static SDValue getTargetNode(ConstantPoolSDNode *N, const SDLoc &DL, EVT Ty, SelectionDAG &DAG, unsigned Flags)
Definition BPFISelLowering.cpp:826
static cl::opt< bool > BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order", cl::Hidden, cl::init(false), cl::desc("Expand memcpy into load/store pairs in order"))
static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg, SDValue Val={})
Definition BPFISelLowering.cpp:46
static cl::opt< unsigned > BPFMinimumJumpTableEntries("bpf-min-jump-table-entries", cl::init(13), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table on BPF"))
static void resetRegMaskBit(const TargetRegisterInfo *TRI, uint32_t *RegMask, MCRegister Reg)
Definition BPFISelLowering.cpp:459
static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC)
Definition BPFISelLowering.cpp:700
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static bool isSigned(unsigned int Opcode)
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Register const TargetRegisterInfo * TRI
Promote Memory to Register
unsigned getCommonMaxStoresPerMemFunc() const
bool getAllowsMisalignedMemAccess() const
bool getHasJmpExt() const
const BPFSelectionDAGInfo * getSelectionDAGInfo() const override
const BPFRegisterInfo * getRegisterInfo() const override
BPFTargetLowering::ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint, return the type of constraint it is for this target.
Definition BPFISelLowering.cpp:284
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
Definition BPFISelLowering.cpp:279
bool getHasJmpExt() const
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override
Return true if folding a constant offset with the given GlobalAddress is legal.
Definition BPFISelLowering.cpp:231
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *) const override
Determine if the target supports unaligned memory accesses.
Definition BPFISelLowering.cpp:213
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the ValueType of the result of SETCC operations.
Definition BPFISelLowering.cpp:1168
BPFTargetLowering(const TargetMachine &TM, const BPFSubtarget &STI)
Definition BPFISelLowering.cpp:59
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
This callback is invoked for operations that are unsupported by the target, which are registered to u...
Definition BPFISelLowering.cpp:347
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
Definition BPFISelLowering.cpp:1027
MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
Definition BPFISelLowering.cpp:1173
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
Definition BPFISelLowering.cpp:298
LLVM Basic Block Representation.
BasicBlock * getBasicBlock() const
CCState - This class holds information needed while lowering arguments and return values.
Register getLocReg() const
LocInfo getLocInfo() const
bool hasFnAttr(Attribute::AttrKind Kind) const
Determine whether this call has the given attribute.
LLVM_ABI DISubroutineType * createSubroutineType(DITypeRefArray ParameterTypes, DINode::DIFlags Flags=DINode::FlagZero, unsigned CC=0)
Create subroutine type.
LLVM_ABI DISubprogram * createFunction(DIScope *Scope, StringRef Name, StringRef LinkageName, DIFile *File, unsigned LineNo, DISubroutineType *Ty, unsigned ScopeLine, DINode::DIFlags Flags=DINode::FlagZero, DISubprogram::DISPFlags SPFlags=DISubprogram::SPFlagZero, DITemplateParameterArray TParams=nullptr, DISubprogram *Decl=nullptr, DITypeArray ThrownTypes=nullptr, DINodeArray Annotations=nullptr, StringRef TargetFuncName="", bool UseKeyInstructions=false)
Create a new descriptor for the specified subprogram.
LLVM_ABI DITypeRefArray getOrCreateTypeArray(ArrayRef< Metadata * > Elements)
Get a DITypeRefArray, create one if required.
Subprogram description. Uses SubclassData1.
Type array for a subprogram.
A parsed version of the target data layout string in and methods for querying it.
Diagnostic information for unsupported feature in backend.
static LLVM_ABI FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
void setSubprogram(DISubprogram *SP)
Set the attached subprogram.
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
bool hasStructRetAttr() const
Determine if the function returns a structure through first or second pointer argument.
Type * getReturnType() const
Returns the type of the ret val.
void setCallingConv(CallingConv::ID CC)
LLVM_ABI void setSection(StringRef S)
Change the section for this global.
LinkageTypes getLinkage() const
Module * getParent()
Get the module that this global value is contained inside of...
void setDSOLocal(bool Local)
@ PrivateLinkage
Like Internal, but omit from symbol table.
@ ExternalWeakLinkage
ExternalWeak linkage description.
This is an important class for using LLVM in a threaded context.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Wrapper class representing physical registers. Should be passed by value.
static auto integer_valuetypes()
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
bool hasAddressTaken() const
Test whether this block is used as something other than the target of a terminator,...
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
uint32_t * allocateRegMask()
Allocate and initialize a register mask with NumRegister bits.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addJumpTableIndex(unsigned Idx, unsigned TargetFlags=0) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
Flags
Flags values. These may be or'd together.
const GlobalValue * getGlobal() const
const BlockAddress * getBlockAddress() const
static unsigned getRegMaskSize(unsigned NumRegs)
Returns number of elements needed for a regmask array.
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
bool isBlockAddress() const
isBlockAddress - Tests if this is a MO_BlockAddress operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void addLiveIn(MCRegister Reg, Register vreg=Register())
addLiveIn - Add the specified register as a live-in.
A Module instance is used to store all the information related to an LLVM module.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const SDValue & getOperand(unsigned Num) const
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI SDValue getRegister(Register Reg, EVT VT)
void addNoMergeSiteInfo(const SDNode *Node, bool NoMerge)
Set NoMergeSiteInfo to be associated with Node if NoMerge is true.
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL)
Return a new CALLSEQ_END node, which always must have a glue result (to ensure it's not CSE'd).
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL)
Return a new CALLSEQ_START node, that starts new call frame, in which InSize bytes are set up inside ...
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset=0, unsigned TargetFlags=0)
MachineFunction & getMachineFunction() const
LLVM_ABI SDValue getRegisterMask(const uint32_t *RegMask)
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue getTargetConstantPool(const Constant *C, EVT VT, MaybeAlign Align=std::nullopt, int Offset=0, unsigned TargetFlags=0)
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
@ ZeroOrOneBooleanContent
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
TargetLowering(const TargetLowering &)=delete
Primary interface to the complete machine description for the target machine.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI Type * getVoidTy(LLVMContext &C)
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
bool isAggregateType() const
Return true if the type is an aggregate type.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isVoidTy() const
Return true if this is 'void'.
Type * getType() const
All values are typed, get the type of this value.
self_iterator getIterator()
A raw_ostream that writes to an std::string.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ SIGN_EXTEND
Conversion operators.
@ CTTZ_ZERO_UNDEF
Bit counting operators with an undefined result for zero inputs.
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ AssertSext
AssertSext, AssertZext - These nodes record if a register contains a value that has already been zero...
LLVM_ABI CondCode getSetCCSwappedOperands(CondCode Operation)
Return the operation corresponding to (Y op X) when given the operation for (X op Y).
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
@ Define
Register definition.
@ EarlyClobber
Register definition happens before uses.
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
detail::concat_range< ValueT, RangeTs... > concat(RangeTs &&...Ranges)
Returns a concatenated range across two or more ranges.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
DWARFExpression::Operation Op
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
void print(raw_ostream &OS) const
Implement operator<<.
bool isInteger() const
Return true if this is an integer or a vector integer type.
This structure contains all information that is necessary for lowering calls.
SmallVector< ISD::InputArg, 32 > Ins
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals