LLVM: lib/IR/ConstantFold.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
32using namespace llvm;
34
35
36
37
38
39
40
41
42
43static unsigned
45 unsigned opc,
46 ConstantExpr *Op,
47 Type *DstTy
- {
49 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
51 assert(CastInst::isCast(opc) && "Invalid cast opcode");
52
53
54 Type *SrcTy = Op->getOperand(0)->getType();
55 Type *MidTy = Op->getType();
58
59
60
61
63
64
66 nullptr, FakeIntPtrTy, nullptr);
67}
68
70 Type *SrcTy = V->getType();
71 if (SrcTy == DestTy)
72 return V;
73
74 if (V->isAllOnesValue())
76
77
78 if (ConstantInt *CI = dyn_cast(V)) {
79
80
81
82 if (isa(DestTy) && !isa(SrcTy))
84
85
86
89 return nullptr;
90
91 return ConstantFP::get(
92 DestTy,
94 }
95
96
97 if (ConstantFP *FP = dyn_cast(V)) {
98
99
100
101 if (isa(DestTy) && !isa(SrcTy))
103
104
105
106
107
108
109
111 return nullptr;
112
113
116 return nullptr;
117
118 return ConstantInt::get(DestTy, FP->getValueAPF().bitcastToAPInt());
119 }
120
121 return nullptr;
122}
123
125 Type *DestTy) {
129}
130
132 Type *DestTy) {
133 if (isa(V))
135
136 if (isa(V)) {
137
138
139
140 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
141 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
144 }
145
146 if (V->isNullValue() && !DestTy->isX86_AMXTy() &&
147 opc != Instruction::AddrSpaceCast)
149
150
151
152 if (ConstantExpr *CE = dyn_cast(V)) {
153 if (CE->isCast()) {
154
157 }
158 }
159
160
161
162
163 if ((isa(V) || isa(V)) &&
165 cast(DestTy)->getNumElements() ==
166 cast(V->getType())->getNumElements()) {
167 VectorType *DestVecTy = cast(DestTy);
169
172 if (!Res)
173 return nullptr;
175 cast(DestTy)->getElementCount(), Res);
176 }
179 for (unsigned i = 0,
180 e = cast(V->getType())->getNumElements();
181 i != e; ++i) {
184 if (!Casted)
185 return nullptr;
187 }
189 }
190
191
192
193 switch (opc) {
194 default:
196 case Instruction::FPTrunc:
197 case Instruction::FPExt:
198 if (ConstantFP *FPC = dyn_cast(V)) {
200 APFloat Val = FPC->getValueAPF();
202 APFloat::rmNearestTiesToEven, &ignored);
203 return ConstantFP::get(DestTy, Val);
204 }
205 return nullptr;
206 case Instruction::FPToUI:
207 case Instruction::FPToSI:
208 if (ConstantFP *FPC = dyn_cast(V)) {
209 const APFloat &V = FPC->getValueAPF();
212 if (APFloat::opInvalidOp ==
213 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
214
215
217 }
218 return ConstantInt::get(DestTy, IntVal);
219 }
220 return nullptr;
221 case Instruction::UIToFP:
222 case Instruction::SIToFP:
223 if (ConstantInt *CI = dyn_cast(V)) {
224 const APInt &api = CI->getValue();
228 APFloat::rmNearestTiesToEven);
229 return ConstantFP::get(DestTy, apf);
230 }
231 return nullptr;
232 case Instruction::ZExt:
233 if (ConstantInt *CI = dyn_cast(V)) {
235 return ConstantInt::get(DestTy, CI->getValue().zext(BitWidth));
236 }
237 return nullptr;
238 case Instruction::SExt:
239 if (ConstantInt *CI = dyn_cast(V)) {
241 return ConstantInt::get(DestTy, CI->getValue().sext(BitWidth));
242 }
243 return nullptr;
244 case Instruction::Trunc: {
245 if (ConstantInt *CI = dyn_cast(V)) {
247 return ConstantInt::get(DestTy, CI->getValue().trunc(BitWidth));
248 }
249
250 return nullptr;
251 }
252 case Instruction::BitCast:
254 case Instruction::AddrSpaceCast:
255 case Instruction::IntToPtr:
256 case Instruction::PtrToInt:
257 return nullptr;
258 }
259}
260
263
264 if (Cond->isNullValue()) return V2;
265 if (Cond->isAllOnesValue()) return V1;
266
267
269 auto *V1VTy = CondV->getType();
272 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
275 ConstantInt::get(Ty, i));
277 ConstantInt::get(Ty, i));
278 auto *Cond = cast(CondV->getOperand(i));
279 if (isa(Cond)) {
281 } else if (V1Element == V2Element) {
282 V = V1Element;
283 } else if (isa(Cond)) {
284 V = isa(V1Element) ? V1Element : V2Element;
285 } else {
286 if (!isa(Cond)) break;
287 V = Cond->isNullValue() ? V2Element : V1Element;
288 }
289 Result.push_back(V);
290 }
291
292
293 if (Result.size() == V1VTy->getNumElements())
295 }
296
297 if (isa(Cond))
299
300 if (isa(Cond)) {
301 if (isa(V1)) return V1;
302 return V2;
303 }
304
305 if (V1 == V2) return V1;
306
307 if (isa(V1))
308 return V2;
309 if (isa(V2))
310 return V1;
311
312
313
314 auto NotPoison = [](Constant *C) {
315 if (isa(C))
316 return false;
317
318
319
320 if (isa(C))
321 return false;
322
323 if (isa(C) || isa(C) || isa(C) ||
325 return true;
326
327 if (C->getType()->isVectorTy())
328 return ->containsPoisonElement() &&
->containsConstantExpression();
329
330
331 return false;
332 };
333 if (isa(V1) && NotPoison(V2)) return V2;
334 if (isa(V2) && NotPoison(V1)) return V1;
335
336 return nullptr;
337}
338
341 auto *ValVTy = cast(Val->getType());
342
343
344
345 if (isa(Val) || isa(Idx))
347
348
349 if (isa(Val))
351
352 auto *CIdx = dyn_cast(Idx);
353 if (!CIdx)
354 return nullptr;
355
356 if (auto *ValFVTy = dyn_cast(Val->getType())) {
357
358 if (CIdx->uge(ValFVTy->getNumElements()))
360 }
361
362
363 if (auto *CE = dyn_cast(Val)) {
364 if (auto *GEP = dyn_cast(CE)) {
366 Ops.reserve(CE->getNumOperands());
367 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
369 if (Op->getType()->isVectorTy()) {
371 if (!ScalarOp)
372 return nullptr;
374 } else
376 }
377 return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
378 GEP->getSourceElementType());
379 } else if (CE->getOpcode() == Instruction::InsertElement) {
380 if (const auto *IEIdx = dyn_cast(CE->getOperand(2))) {
382 APSInt(CIdx->getValue()))) {
383 return CE->getOperand(1);
384 } else {
386 }
387 }
388 }
389 }
390
392 return C;
393
394
395 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
397 return SplatVal;
398 }
399
400 return nullptr;
401}
402
406 if (isa(Idx))
408
409
410
411 if (isa(Val) && Elt->isNullValue())
412 return Val;
413
415 if (!CIdx) return nullptr;
416
417
418
419 if (isa(Val->getType()))
420 return nullptr;
421
422 auto *ValTy = cast(Val->getType());
423
424 unsigned NumElts = ValTy->getNumElements();
425 if (CIdx->uge(NumElts))
427
429 Result.reserve(NumElts);
432 for (unsigned i = 0; i != NumElts; ++i) {
433 if (i == IdxVal) {
434 Result.push_back(Elt);
435 continue;
436 }
437
439 Result.push_back(C);
440 }
441
443}
444
447 auto *V1VTy = cast(V1->getType());
448 unsigned MaskNumElts = Mask.size();
449 auto MaskEltCount =
451 Type *EltTy = V1VTy->getElementType();
452
453
455 return PoisonValue::get(VectorType::get(EltTy, MaskEltCount));
456 }
457
458
459
460 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
464
466 auto *VTy = VectorType::get(EltTy, MaskEltCount);
468 } else if (!MaskEltCount.isScalable())
470 }
471
472
473
474 if (isa(V1VTy))
475 return nullptr;
476
477 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
478
479
481 for (unsigned i = 0; i != MaskNumElts; ++i) {
482 int Elt = Mask[i];
483 if (Elt == -1) {
485 continue;
486 }
488 if (unsigned(Elt) >= SrcNumElts*2)
490 else if (unsigned(Elt) >= SrcNumElts) {
492 InElt =
494 ConstantInt::get(Ty, Elt - SrcNumElts));
495 } else {
498 }
499 Result.push_back(InElt);
500 }
501
503}
504
507
508 if (Idxs.empty())
509 return Agg;
510
513
514 return nullptr;
515}
516
520
521 if (Idxs.empty())
522 return Val;
523
524 unsigned NumElts;
526 NumElts = ST->getNumElements();
527 else
528 NumElts = cast(Agg->getType())->getNumElements();
529
531 for (unsigned i = 0; i != NumElts; ++i) {
533 if () return nullptr;
534
535 if (Idxs[0] == i)
537
538 Result.push_back(C);
539 }
540
544}
545
548
549
550
551 bool IsScalableVector = isa(C->getType());
552 bool HasScalarUndefOrScalableVectorUndef =
553 (->getType()->isVectorTy() || IsScalableVector) && isa(C);
554
555 if (HasScalarUndefOrScalableVectorUndef) {
557 case Instruction::FNeg:
558 return C;
559 case Instruction::UnaryOpsEnd:
561 }
562 }
563
564
565 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
566
567 assert(!isa(C) && "Unexpected Integer UnaryOp");
568
569 if (ConstantFP *CFP = dyn_cast(C)) {
570 const APFloat &CV = CFP->getValueAPF();
571 switch (Opcode) {
572 default:
573 break;
574 case Instruction::FNeg:
575 return ConstantFP::get(C->getType(), neg(CV));
576 }
577 } else if (auto *VTy = dyn_cast(C->getType())) {
578
582
583 if (auto *FVTy = dyn_cast(VTy)) {
584
587 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
588 Constant *ExtractIdx = ConstantInt::get(Ty, i);
591 if (!Res)
592 return nullptr;
593 Result.push_back(Res);
594 }
595
597 }
598 }
599
600
601 return nullptr;
602}
603
607
608
609
611 Opcode, C1->getType(), false)) {
612 if (C1 == Identity)
613 return C2;
614 if (C2 == Identity)
615 return C1;
617 Opcode, C1->getType(), true)) {
618 if (C2 == Identity)
619 return C1;
620 }
621
622
623 if (isa(C1) || isa(C2))
625
626
627
628 bool IsScalableVector = isa(C1->getType());
629 bool HasScalarUndefOrScalableVectorUndef =
631 (isa(C1) || isa(C2));
632 if (HasScalarUndefOrScalableVectorUndef) {
634 case Instruction::Xor:
635 if (isa(C1) && isa(C2))
636
637
639 [[fallthrough]];
640 case Instruction::Add:
641 case Instruction::Sub:
643 case Instruction::And:
644 if (isa(C1) && isa(C2))
645 return C1;
647 case Instruction::Mul: {
648
649 if (isa(C1) && isa(C2))
650 return C1;
652
654 if ((*CV)[0])
656
657
659 }
660 case Instruction::SDiv:
661 case Instruction::UDiv:
662
663
666
668 case Instruction::URem:
669 case Instruction::SRem:
670
671
674
676 case Instruction::Or:
677 if (isa(C1) && isa(C2))
678 return C1;
680 case Instruction::LShr:
681
682 if (isa(C2))
684
686 case Instruction::AShr:
687
688 if (isa(C2))
690
691
693 case Instruction::Shl:
694
695 if (isa(C2))
697
699 case Instruction::FSub:
700
702 return C2;
703 [[fallthrough]];
704 case Instruction::FAdd:
705 case Instruction::FMul:
706 case Instruction::FDiv:
707 case Instruction::FRem:
708
709 if (isa(C1) && isa(C2))
710 return C1;
711
712
713
714
715
716
717
719 case Instruction::BinaryOpsEnd:
721 }
722 }
723
724
725 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
726
727
728 if (ConstantInt *CI2 = dyn_cast(C2)) {
730 false))
731 return C2;
732
733 switch (Opcode) {
734 case Instruction::UDiv:
735 case Instruction::SDiv:
736 if (CI2->isZero())
738 break;
739 case Instruction::URem:
740 case Instruction::SRem:
741 if (CI2->isOne())
743 if (CI2->isZero())
745 break;
746 case Instruction::And:
747 assert(!CI2->isZero() && "And zero handled above");
748 if (ConstantExpr *CE1 = dyn_cast(C1)) {
749
750 if (CE1->getOpcode() == Instruction::PtrToInt &&
751 isa(CE1->getOperand(0))) {
752 GlobalValue *GV = cast(CE1->getOperand(0));
753
754 Align GVAlign;
755
757 const DataLayout &DL = TheModule->getDataLayout();
759
760
761
762
763
764
765
766
767
768
769 if (isa(GV) && .getFunctionPtrAlign())
770 GVAlign = Align(4);
771 } else if (isa(GV)) {
772 GVAlign = cast(GV)->getAlign().valueOrOne();
773 }
774
775 if (GVAlign > 1) {
776 unsigned DstWidth = CI2->getBitWidth();
777 unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign));
779
780
781 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
783 }
784 }
785 }
786 break;
787 }
788 } else if (isa(C1)) {
789
794 }
795
796 if (ConstantInt *CI1 = dyn_cast(C1)) {
797 if (ConstantInt *CI2 = dyn_cast(C2)) {
798 const APInt &C1V = CI1->getValue();
799 const APInt &C2V = CI2->getValue();
800 switch (Opcode) {
801 default:
802 break;
803 case Instruction::Add:
804 return ConstantInt::get(C1->getType(), C1V + C2V);
805 case Instruction::Sub:
806 return ConstantInt::get(C1->getType(), C1V - C2V);
807 case Instruction::Mul:
808 return ConstantInt::get(C1->getType(), C1V * C2V);
809 case Instruction::UDiv:
810 assert(!CI2->isZero() && "Div by zero handled above");
811 return ConstantInt::get(CI1->getType(), C1V.udiv(C2V));
812 case Instruction::SDiv:
813 assert(!CI2->isZero() && "Div by zero handled above");
815 return PoisonValue::get(CI1->getType());
816 return ConstantInt::get(CI1->getType(), C1V.sdiv(C2V));
817 case Instruction::URem:
818 assert(!CI2->isZero() && "Div by zero handled above");
819 return ConstantInt::get(C1->getType(), C1V.urem(C2V));
820 case Instruction::SRem:
821 assert(!CI2->isZero() && "Div by zero handled above");
824 return ConstantInt::get(C1->getType(), C1V.srem(C2V));
825 case Instruction::And:
826 return ConstantInt::get(C1->getType(), C1V & C2V);
827 case Instruction::Or:
828 return ConstantInt::get(C1->getType(), C1V | C2V);
829 case Instruction::Xor:
830 return ConstantInt::get(C1->getType(), C1V ^ C2V);
831 case Instruction::Shl:
833 return ConstantInt::get(C1->getType(), C1V.shl(C2V));
835 case Instruction::LShr:
837 return ConstantInt::get(C1->getType(), C1V.lshr(C2V));
839 case Instruction::AShr:
841 return ConstantInt::get(C1->getType(), C1V.ashr(C2V));
843 }
844 }
845
847 true))
848 return C1;
849 } else if (ConstantFP *CFP1 = dyn_cast(C1)) {
850 if (ConstantFP *CFP2 = dyn_cast(C2)) {
851 const APFloat &C1V = CFP1->getValueAPF();
852 const APFloat &C2V = CFP2->getValueAPF();
853 APFloat C3V = C1V;
854 switch (Opcode) {
855 default:
856 break;
857 case Instruction::FAdd:
858 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
859 return ConstantFP::get(C1->getType(), C3V);
860 case Instruction::FSub:
861 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
862 return ConstantFP::get(C1->getType(), C3V);
863 case Instruction::FMul:
864 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
865 return ConstantFP::get(C1->getType(), C3V);
866 case Instruction::FDiv:
867 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
868 return ConstantFP::get(C1->getType(), C3V);
869 case Instruction::FRem:
870 (void)C3V.mod(C2V);
871 return ConstantFP::get(C1->getType(), C3V);
872 }
873 }
874 }
875
876 if (auto *VTy = dyn_cast(C1->getType())) {
877
886 if (!Res)
887 return nullptr;
889 }
890 }
891
892 if (auto *FVTy = dyn_cast(VTy)) {
893
896 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
897 Constant *ExtractIdx = ConstantInt::get(Ty, i);
903 if (!Res)
904 return nullptr;
905 Result.push_back(Res);
906 }
907
909 }
910 }
911
912 if (ConstantExpr *CE1 = dyn_cast(C1)) {
913
914
915
916
917
918
921 if (!isa(T) || cast(T)->getOpcode() != Opcode)
923 }
924 } else if (isa(C2)) {
925
926
929 }
930
931
933 switch (Opcode) {
934 case Instruction::Add:
935 case Instruction::Sub:
937 case Instruction::Shl:
938 case Instruction::LShr:
939 case Instruction::AShr:
940
941
942 return C1;
943 case Instruction::SDiv:
944 case Instruction::UDiv:
945
946
947 return C1;
948 case Instruction::URem:
949 case Instruction::SRem:
950
951
953 default:
954 break;
955 }
956 }
957
958
959 return nullptr;
960}
961
964 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
965 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
966 return true;
967 if (const auto *GVar = dyn_cast(GV)) {
968 Type *Ty = GVar->getValueType();
969
971 return true;
972
973
975 return true;
976 }
977 return false;
978 };
979
980 if (!isa(GV1) && !isa(GV2))
981 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
982 return ICmpInst::ICMP_NE;
983 return ICmpInst::BAD_ICMP_PREDICATE;
984}
985
986
987
988
989
990
991
994 "Cannot compare different types of values!");
995 if (V1 == V2) return ICmpInst::ICMP_EQ;
996
997
999 return ICmpInst::BAD_ICMP_PREDICATE;
1000
1001
1002
1003
1004
1005 auto GetComplexity = [](Constant *V) {
1006 if (isa(V))
1007 return 3;
1008 if (isa(V))
1009 return 2;
1010 if (isa(V))
1011 return 1;
1012 return 0;
1013 };
1014 if (GetComplexity(V1) < GetComplexity(V2)) {
1016 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1017 return ICmpInst::getSwappedPredicate(SwappedRelation);
1018 return ICmpInst::BAD_ICMP_PREDICATE;
1019 }
1020
1021 if (const BlockAddress *BA = dyn_cast(V1)) {
1022
1023 if (const BlockAddress *BA2 = dyn_cast(V2)) {
1024
1025
1026
1027 if (BA2->getFunction() != BA->getFunction())
1028 return ICmpInst::ICMP_NE;
1029 } else if (isa(V2)) {
1030 return ICmpInst::ICMP_NE;
1031 }
1032 } else if (const GlobalValue *GV = dyn_cast(V1)) {
1033
1034
1035 if (const GlobalValue *GV2 = dyn_cast(V2)) {
1037 } else if (isa(V2)) {
1038 return ICmpInst::ICMP_NE;
1039 } else if (isa(V2)) {
1040
1041
1042
1043
1044
1045 if (!GV->hasExternalWeakLinkage() && !isa(GV) &&
1047 GV->getType()->getAddressSpace()))
1048 return ICmpInst::ICMP_UGT;
1049 }
1050 } else if (auto *CE1 = dyn_cast(V1)) {
1051
1052
1054
1055 switch (CE1->getOpcode()) {
1056 case Instruction::GetElementPtr: {
1057 GEPOperator *CE1GEP = cast(CE1);
1058
1059
1060 if (isa(V2)) {
1061
1062
1063 if (const GlobalValue *GV = dyn_cast(CE1Op0)) {
1064
1065
1066 if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
1067 return ICmpInst::ICMP_UGT;
1068 }
1069 } else if (const GlobalValue *GV2 = dyn_cast(V2)) {
1070 if (const GlobalValue *GV = dyn_cast(CE1Op0)) {
1071 if (GV != GV2) {
1074 return ICmpInst::BAD_ICMP_PREDICATE;
1075 }
1076 }
1077 } else if (const auto *CE2GEP = dyn_cast(V2)) {
1078
1079
1080 const Constant *CE2Op0 = cast(CE2GEP->getPointerOperand());
1081 if (isa(CE1Op0) && isa(CE2Op0)) {
1082
1083 if (CE1Op0 != CE2Op0) {
1086 cast(CE2Op0));
1087 return ICmpInst::BAD_ICMP_PREDICATE;
1088 }
1089 }
1090 }
1091 break;
1092 }
1093 default:
1094 break;
1095 }
1096 }
1097
1098 return ICmpInst::BAD_ICMP_PREDICATE;
1099}
1100
1103 Type *ResultTy;
1106 VT->getElementCount());
1107 else
1109
1110
1111 if (Predicate == FCmpInst::FCMP_FALSE)
1113
1114 if (Predicate == FCmpInst::FCMP_TRUE)
1116
1117
1118 if (isa(C1) || isa(C2))
1120
1121 if (isa(C1) || isa(C2)) {
1122 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1123
1124
1125
1128
1129
1130
1131 if (isIntegerPredicate)
1133
1134
1135
1137 }
1138
1140
1141
1142
1143 if (Predicate == ICmpInst::ICMP_UGE)
1145
1146 if (Predicate == ICmpInst::ICMP_ULT)
1148 }
1149
1150
1152 switch (Predicate) {
1153 case ICmpInst::ICMP_EQ:
1154 if (isa(C2))
1157 case ICmpInst::ICMP_NE:
1159 default:
1160 break;
1161 }
1162 }
1163
1164 if (isa(C1) && isa(C2)) {
1165 const APInt &V1 = cast(C1)->getValue();
1166 const APInt &V2 = cast(C2)->getValue();
1167 return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
1168 } else if (isa(C1) && isa(C2)) {
1169 const APFloat &C1V = cast(C1)->getValueAPF();
1170 const APFloat &C2V = cast(C2)->getValueAPF();
1171 return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
1172 } else if (auto *C1VTy = dyn_cast(C1->getType())) {
1173
1174
1180
1181
1182
1183 if (isa(C1VTy))
1184 return nullptr;
1185
1186
1187
1190
1191 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1198 if (!Elt)
1199 return nullptr;
1200
1202 }
1203
1205 }
1206
1208 if (C1 == C2) {
1209
1210 if (Predicate == FCmpInst::FCMP_ONE)
1212 else if (Predicate == FCmpInst::FCMP_UEQ)
1214 }
1215 } else {
1216
1217 int Result = -1;
1220 case ICmpInst::BAD_ICMP_PREDICATE:
1221 break;
1222 case ICmpInst::ICMP_EQ:
1223
1224
1225 Result = ICmpInst::isTrueWhenEqual(Predicate);
1226 break;
1227 case ICmpInst::ICMP_ULT:
1228 switch (Predicate) {
1229 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1230 Result = 1; break;
1231 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1232 Result = 0; break;
1233 default:
1234 break;
1235 }
1236 break;
1237 case ICmpInst::ICMP_SLT:
1238 switch (Predicate) {
1239 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1240 Result = 1; break;
1241 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1242 Result = 0; break;
1243 default:
1244 break;
1245 }
1246 break;
1247 case ICmpInst::ICMP_UGT:
1248 switch (Predicate) {
1249 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1250 Result = 1; break;
1251 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1252 Result = 0; break;
1253 default:
1254 break;
1255 }
1256 break;
1257 case ICmpInst::ICMP_SGT:
1258 switch (Predicate) {
1259 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1260 Result = 1; break;
1261 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1262 Result = 0; break;
1263 default:
1264 break;
1265 }
1266 break;
1267 case ICmpInst::ICMP_ULE:
1268 if (Predicate == ICmpInst::ICMP_UGT)
1269 Result = 0;
1270 if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE)
1271 Result = 1;
1272 break;
1273 case ICmpInst::ICMP_SLE:
1274 if (Predicate == ICmpInst::ICMP_SGT)
1275 Result = 0;
1276 if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE)
1277 Result = 1;
1278 break;
1279 case ICmpInst::ICMP_UGE:
1280 if (Predicate == ICmpInst::ICMP_ULT)
1281 Result = 0;
1282 if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE)
1283 Result = 1;
1284 break;
1285 case ICmpInst::ICMP_SGE:
1286 if (Predicate == ICmpInst::ICMP_SLT)
1287 Result = 0;
1288 if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE)
1289 Result = 1;
1290 break;
1291 case ICmpInst::ICMP_NE:
1292 if (Predicate == ICmpInst::ICMP_EQ)
1293 Result = 0;
1294 if (Predicate == ICmpInst::ICMP_NE)
1295 Result = 1;
1296 break;
1297 }
1298
1299
1300 if (Result != -1)
1301 return ConstantInt::get(ResultTy, Result);
1302
1303 if ((!isa(C1) && isa(C2)) ||
1305
1306
1307
1308 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1310 }
1311 }
1312 return nullptr;
1313}
1314
1316 std::optional InRange,
1318 if (Idxs.empty()) return C;
1319
1322
1323 if (isa(C))
1325
1326 if (isa(C))
1328
1329 auto IsNoOp = [&]() {
1330
1332 return false;
1333
1336 return IdxC->isNullValue() || isa(IdxC);
1337 });
1338 };
1339 if (IsNoOp())
1340 return GEPTy->isVectorTy() && ->getType()->isVectorTy()
1342 cast(GEPTy)->getElementCount(), C)
1343 : C;
1344
1345 return nullptr;
1346}
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static unsigned foldConstantCastPair(unsigned opc, ConstantExpr *Op, Type *DstTy)
This function determines which opcode to use to fold two constant cast expressions together.
static Constant * foldMaybeUndesirableCast(unsigned opc, Constant *V, Type *DestTy)
static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, const GlobalValue *GV2)
static Constant * FoldBitCast(Constant *V, Type *DestTy)
static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2)
This function determines if there is anything we can decide about the two constants provided.
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
Looks at all the uses of the given value Returns the Liveness deduced from the uses of this value Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses If the result is MaybeLiveUses might be modified but its content should be ignored(since it might not be complete). DeadArgumentEliminationPass
Module.h This file contains the declarations for the Module class.
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
opStatus divide(const APFloat &RHS, roundingMode RM)
opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus mod(const APFloat &RHS)
Class for arbitrary precision integers.
APInt udiv(const APInt &RHS) const
Unsigned division operation.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
APInt srem(const APInt &RHS) const
Function for signed remainder operation.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
An arbitrary precision integer that knows its signedness.
static bool isSameValue(const APSInt &I1, const APSInt &I2)
Determine if two APSInts have the same value, zero- or sign-extending as needed.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
The address of a basic block.
static unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy)
Determine how a pair of casts can be eliminated, if they can be at all.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
bool isTrueWhenEqual() const
This is just a convenience.
static bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static ConstantAggregateZero * get(Type *Ty)
static Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A constant value that is initialized with an expression using other constant values.
static Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static Constant * getNot(Constant *C)
static Constant * getXor(Constant *C1, Constant *C2)
static Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
ConstantFP - Floating Point Values [float, double].
static Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
static ConstantInt * getTrue(LLVMContext &Context)
static ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
bool uge(uint64_t Num) const
This function will return true iff this constant represents a value with active bits bigger than 64 b...
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Constant Vector Declarations.
static Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static Constant * getAllOnesValue(Type *Ty)
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
static bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
bool isInBounds() const
Test whether this is an inbounds GEP, as defined by LangRef.html.
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
Module * getParent()
Get the module that this global value is contained inside of...
static bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
bool isEquality() const
Return true if this predicate is either EQ or NE.
bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
Class to represent integer types.
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A Module instance is used to store all the information related to an LLVM module.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
void reserve(size_type N)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
The instances of the Type class are immutable: once they are created, they are never changed.
const fltSemantics & getFltSemantics() const
bool isVectorTy() const
True if this is an instance of VectorType.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
bool isEmptyTy() const
Return true if this type is empty, that is, it has no elements or all of its elements are empty.
bool isPPC_FP128Ty() const
Return true if this is powerpc long double.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isX86_AMXTy() const
Return true if this is X86 AMX.
static IntegerType * getInt32Ty(LLVMContext &C)
static IntegerType * getInt64Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
Type * getElementType() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
auto m_Undef()
Match an arbitrary undef constant.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Constant * ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, Constant *Idx)
Attempt to constant fold an insertelement instruction with the specified operands and indices.
constexpr int PoisonMaskElem
Constant * ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx)
Attempt to constant fold an extractelement instruction with the specified operands and indices.
constexpr unsigned BitWidth
APFloat neg(APFloat X)
Returns the negated value of the argument.
Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
ConstantFoldInsertValueInstruction - Attempt to constant fold an insertvalue instruction with the spe...
unsigned Log2(Align A)
Returns the log2 of the alignment.
Constant * ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, ArrayRef< int > Mask)
Attempt to constant fold a shufflevector instruction with the specified operands and mask.
Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
This struct is a compact representation of a valid (non-zero power of two) alignment.