LLVM: lib/IR/ConstantFold.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
32using namespace llvm;
34
35
36
37
38
39
40
41
42
43static unsigned
45 unsigned opc,
46 ConstantExpr *Op,
47 Type *DstTy
- {
49 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
52
53
54 Type *SrcTy = Op->getOperand(0)->getType();
55 Type *MidTy = Op->getType();
59 nullptr);
60}
61
63 Type *SrcTy = V->getType();
64 if (SrcTy == DestTy)
65 return V;
66
67 if (V->isAllOnesValue())
69
70
72
73
74
77
78
79
82 return nullptr;
83
84 return ConstantFP::get(
85 DestTy,
87 }
88
89
91
92
93
96
97
98
99
100
101
102
103 if (SrcTy->isPPC_FP128Ty())
104 return nullptr;
105
106
109 return nullptr;
110
111 return ConstantInt::get(DestTy, FP->getValueAPF().bitcastToAPInt());
112 }
113
114 return nullptr;
115}
116
123
125 Type *DestTy) {
128
130
131
132
133 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
134 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
137 }
138
139 if (V->isNullValue() && !DestTy->isX86_AMXTy() &&
140 opc != Instruction::AddrSpaceCast)
142
143
144
146 if (CE->isCast()) {
147
150 }
151 }
152
153
154
155
156 if (DestTy->isVectorTy() && V->getType()->isVectorTy() &&
161
164 if (!Res)
165 return nullptr;
168 }
170 return nullptr;
173 for (unsigned i = 0,
175 i != e; ++i) {
178 if (!Casted)
179 return nullptr;
181 }
183 }
184
185
186
187 switch (opc) {
188 default:
190 case Instruction::FPTrunc:
191 case Instruction::FPExt:
193 bool ignored;
194 APFloat Val = FPC->getValueAPF();
197 return ConstantFP::get(DestTy, Val);
198 }
199 return nullptr;
200 case Instruction::FPToUI:
201 case Instruction::FPToSI:
203 const APFloat &V = FPC->getValueAPF();
204 bool ignored;
208
209
211 }
212 return ConstantInt::get(DestTy, IntVal);
213 }
214 return nullptr;
215 case Instruction::UIToFP:
216 case Instruction::SIToFP:
218 const APInt &api = CI->getValue();
223 return ConstantFP::get(DestTy, apf);
224 }
225 return nullptr;
226 case Instruction::ZExt:
229 return ConstantInt::get(DestTy, CI->getValue().zext(BitWidth));
230 }
231 return nullptr;
232 case Instruction::SExt:
235 return ConstantInt::get(DestTy, CI->getValue().sext(BitWidth));
236 }
237 return nullptr;
238 case Instruction::Trunc: {
241 return ConstantInt::get(DestTy, CI->getValue().trunc(BitWidth));
242 }
243
244 return nullptr;
245 }
246 case Instruction::BitCast:
248 case Instruction::AddrSpaceCast:
249 case Instruction::IntToPtr:
250 case Instruction::PtrToAddr:
251 case Instruction::PtrToInt:
252 return nullptr;
253 }
254}
255
258
259 if (Cond->isNullValue()) return V2;
260 if (Cond->isAllOnesValue()) return V1;
261
262
264 auto *V1VTy = CondV->getType();
267 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
270 ConstantInt::get(Ty, i));
272 ConstantInt::get(Ty, i));
276 } else if (V1Element == V2Element) {
277 V = V1Element;
280 } else {
282 V = Cond->isNullValue() ? V2Element : V1Element;
283 }
284 Result.push_back(V);
285 }
286
287
288 if (Result.size() == V1VTy->getNumElements())
290 }
291
294
297 return V2;
298 }
299
300 if (V1 == V2) return V1;
301
303 return V2;
305 return V1;
306
307
308
309 auto NotPoison = [](Constant *C) {
311 return false;
312
313
314
316 return false;
317
320 return true;
321
322 if (C->getType()->isVectorTy())
323 return ->containsPoisonElement() &&
->containsConstantExpression();
324
325
326 return false;
327 };
330
331 return nullptr;
332}
333
337
338
339
342
343
346
348 if (!CIdx)
349 return nullptr;
350
352
353 if (CIdx->uge(ValFVTy->getNumElements()))
355 }
356
357
361 Ops.reserve(CE->getNumOperands());
362 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
364 if (Op->getType()->isVectorTy()) {
366 if (!ScalarOp)
367 return nullptr;
368 Ops.push_back(ScalarOp);
369 } else
371 }
372 return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
373 GEP->getSourceElementType());
374 } else if (CE->getOpcode() == Instruction::InsertElement) {
377 APSInt(CIdx->getValue()))) {
378 return CE->getOperand(1);
379 } else {
381 }
382 }
383 }
384 }
385
387 return C;
388
389
390 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
392 return SplatVal;
393 }
394
395 return nullptr;
396}
397
403
404
405
407 return Val;
408
410 if (!CIdx) return nullptr;
411
412
413
415 return nullptr;
416
418
419 unsigned NumElts = ValTy->getNumElements();
420 if (CIdx->uge(NumElts))
422
424 Result.reserve(NumElts);
427 for (unsigned i = 0; i != NumElts; ++i) {
428 if (i == IdxVal) {
429 Result.push_back(Elt);
430 continue;
431 }
432
434 Result.push_back(C);
435 }
436
438}
439
443 unsigned MaskNumElts = Mask.size();
444 auto MaskEltCount =
446 Type *EltTy = V1VTy->getElementType();
447
448
451 }
452
453
454
455 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
459
460
461
464 }
465
466
467
469 return nullptr;
470
471 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
472
473
475 for (unsigned i = 0; i != MaskNumElts; ++i) {
476 int Elt = Mask[i];
477 if (Elt == -1) {
479 continue;
480 }
482 if (unsigned(Elt) >= SrcNumElts*2)
484 else if (unsigned(Elt) >= SrcNumElts) {
486 InElt =
488 ConstantInt::get(Ty, Elt - SrcNumElts));
489 } else {
492 }
493 Result.push_back(InElt);
494 }
495
497}
498
501
502 if (Idxs.empty())
503 return Agg;
504
507
508 return nullptr;
509}
510
514
515 if (Idxs.empty())
516 return Val;
517
518 unsigned NumElts;
520 NumElts = ST->getNumElements();
521 else
523
525 for (unsigned i = 0; i != NumElts; ++i) {
527 if () return nullptr;
528
529 if (Idxs[0] == i)
531
532 Result.push_back(C);
533 }
534
538}
539
542
543
544
546 bool HasScalarUndefOrScalableVectorUndef =
547 (->getType()->isVectorTy() || IsScalableVector) && isa(C);
548
549 if (HasScalarUndefOrScalableVectorUndef) {
551 case Instruction::FNeg:
552 return C;
553 case Instruction::UnaryOpsEnd:
555 }
556 }
557
558
559 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
560
562
564 const APFloat &CV = CFP->getValueAPF();
565 switch (Opcode) {
566 default:
567 break;
568 case Instruction::FNeg:
569 return ConstantFP::get(C->getType(), neg(CV));
570 }
572
576
578
581 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
582 Constant *ExtractIdx = ConstantInt::get(Ty, i);
585 if (!Res)
586 return nullptr;
587 Result.push_back(Res);
588 }
589
591 }
592 }
593
594
595 return nullptr;
596}
597
601
602
603
605 Opcode, C1->getType(), false)) {
606 if (C1 == Identity)
607 return C2;
608 if (C2 == Identity)
609 return C1;
611 Opcode, C1->getType(), true)) {
612 if (C2 == Identity)
613 return C1;
614 }
615
616
619
620
621
623 bool HasScalarUndefOrScalableVectorUndef =
624 (!C1->getType()->isVectorTy() || IsScalableVector) &&
626 if (HasScalarUndefOrScalableVectorUndef) {
628 case Instruction::Xor:
630
631
633 [[fallthrough]];
634 case Instruction::Add:
635 case Instruction::Sub:
637 case Instruction::And:
639 return C1;
641 case Instruction::Mul: {
642
644 return C1;
646
648 if ((*CV)[0])
650
651
653 }
654 case Instruction::SDiv:
655 case Instruction::UDiv:
656
657
660
662 case Instruction::URem:
663 case Instruction::SRem:
664
665
668
670 case Instruction::Or:
672 return C1;
674 case Instruction::LShr:
675
678
680 case Instruction::AShr:
681
684
685
687 case Instruction::Shl:
688
691
693 case Instruction::FSub:
694
696 return C2;
697 [[fallthrough]];
698 case Instruction::FAdd:
699 case Instruction::FMul:
700 case Instruction::FDiv:
701 case Instruction::FRem:
702
704 return C1;
705
706
707
708
709
710
711
713 case Instruction::BinaryOpsEnd:
715 }
716 }
717
718
719 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
720
721
724 false))
725 return C2;
726
727 switch (Opcode) {
728 case Instruction::UDiv:
729 case Instruction::SDiv:
730 if (CI2->isZero())
732 break;
733 case Instruction::URem:
734 case Instruction::SRem:
735 if (CI2->isOne())
737 if (CI2->isZero())
739 break;
740 case Instruction::And:
741 assert(!CI2->isZero() && "And zero handled above");
743
744 if ((CE1->getOpcode() == Instruction::PtrToInt ||
745 CE1->getOpcode() == Instruction::PtrToAddr) &&
748
749 Align GVAlign;
750
752 const DataLayout &DL = TheModule->getDataLayout();
754
755
756
757
758
759
760
761
762
763
765 GVAlign = Align(4);
768 }
769
770 if (GVAlign > 1) {
771 unsigned DstWidth = CI2->getBitWidth();
772 unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign));
774
775
776 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
778 }
779 }
780 }
781 break;
782 }
784
789 }
790
793 const APInt &C1V = CI1->getValue();
794 const APInt &C2V = CI2->getValue();
795 switch (Opcode) {
796 default:
797 break;
798 case Instruction::Add:
799 return ConstantInt::get(C1->getType(), C1V + C2V);
800 case Instruction::Sub:
801 return ConstantInt::get(C1->getType(), C1V - C2V);
802 case Instruction::Mul:
803 return ConstantInt::get(C1->getType(), C1V * C2V);
804 case Instruction::UDiv:
805 assert(!CI2->isZero() && "Div by zero handled above");
806 return ConstantInt::get(CI1->getType(), C1V.udiv(C2V));
807 case Instruction::SDiv:
808 assert(!CI2->isZero() && "Div by zero handled above");
810 return PoisonValue::get(CI1->getType());
811 return ConstantInt::get(CI1->getType(), C1V.sdiv(C2V));
812 case Instruction::URem:
813 assert(!CI2->isZero() && "Div by zero handled above");
814 return ConstantInt::get(C1->getType(), C1V.urem(C2V));
815 case Instruction::SRem:
816 assert(!CI2->isZero() && "Div by zero handled above");
819 return ConstantInt::get(C1->getType(), C1V.srem(C2V));
820 case Instruction::And:
821 return ConstantInt::get(C1->getType(), C1V & C2V);
822 case Instruction::Or:
823 return ConstantInt::get(C1->getType(), C1V | C2V);
824 case Instruction::Xor:
825 return ConstantInt::get(C1->getType(), C1V ^ C2V);
826 case Instruction::Shl:
828 return ConstantInt::get(C1->getType(), C1V.shl(C2V));
830 case Instruction::LShr:
832 return ConstantInt::get(C1->getType(), C1V.lshr(C2V));
834 case Instruction::AShr:
836 return ConstantInt::get(C1->getType(), C1V.ashr(C2V));
838 }
839 }
840
842 true))
843 return C1;
846 const APFloat &C1V = CFP1->getValueAPF();
847 const APFloat &C2V = CFP2->getValueAPF();
848 APFloat C3V = C1V;
849 switch (Opcode) {
850 default:
851 break;
852 case Instruction::FAdd:
854 return ConstantFP::get(C1->getType(), C3V);
855 case Instruction::FSub:
857 return ConstantFP::get(C1->getType(), C3V);
858 case Instruction::FMul:
860 return ConstantFP::get(C1->getType(), C3V);
861 case Instruction::FDiv:
863 return ConstantFP::get(C1->getType(), C3V);
864 case Instruction::FRem:
865 (void)C3V.mod(C2V);
866 return ConstantFP::get(C1->getType(), C3V);
867 }
868 }
869 }
870
872
881 if (!Res)
882 return nullptr;
884 }
885 }
886
888
891 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
892 Constant *ExtractIdx = ConstantInt::get(Ty, i);
898 if (!Res)
899 return nullptr;
900 Result.push_back(Res);
901 }
902
904 }
905 }
906
908
909
910
911
912
913
918 }
920
921
924 }
925
926
928 switch (Opcode) {
929 case Instruction::Add:
930 case Instruction::Sub:
932 case Instruction::Shl:
933 case Instruction::LShr:
934 case Instruction::AShr:
935
936
937 return C1;
938 case Instruction::SDiv:
939 case Instruction::UDiv:
940
941
942 return C1;
943 case Instruction::URem:
944 case Instruction::SRem:
945
946
948 default:
949 break;
950 }
951 }
952
953
954 return nullptr;
955}
956
959 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
960 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
961 return true;
963 Type *Ty = GVar->getValueType();
964
965 if (!Ty->isSized())
966 return true;
967
968
969 if (Ty->isEmptyTy())
970 return true;
971 }
972 return false;
973 };
974
976 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
979}
980
981
982
983
984
985
986
989 "Cannot compare different types of values!");
991
992
995
996
997
998
999
1000 auto GetComplexity = [](Constant *V) {
1002 return 3;
1004 return 2;
1006 return 1;
1007 return 0;
1008 };
1009 if (GetComplexity(V1) < GetComplexity(V2)) {
1014 }
1015
1017
1019
1020
1021
1022 if (BA2->getFunction() != BA->getFunction())
1026 }
1028
1029
1035
1036
1037
1038
1039
1040 if (!GV->hasExternalWeakLinkage() && (GV) &&
1042 GV->getType()->getAddressSpace()))
1044 }
1046
1047
1049
1050 switch (CE1->getOpcode()) {
1051 case Instruction::GetElementPtr: {
1053
1054
1056
1057
1059
1060
1061 if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
1063 }
1066 if (GV != GV2) {
1070 }
1071 }
1073
1074
1077
1078 if (CE1Op0 != CE2Op0) {
1083 }
1084 }
1085 }
1086 break;
1087 }
1088 default:
1089 break;
1090 }
1091 }
1092
1094}
1095
1098 Type *ResultTy;
1101 VT->getElementCount());
1102 else
1104
1105
1108
1111
1112
1115
1118
1119
1120
1123
1124
1125
1126 if (isIntegerPredicate)
1128
1129
1130
1132 }
1133
1135
1136
1137
1140
1143 }
1144
1145
1147 switch (Predicate) {
1154 default:
1155 break;
1156 }
1157 }
1158
1162 return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
1166 return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
1168
1169
1175
1176
1177
1179 return nullptr;
1180
1181
1182
1185
1186 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1193 if (!Elt)
1194 return nullptr;
1195
1197 }
1198
1200 }
1201
1203 if (C1 == C2) {
1204
1209 }
1210 } else {
1211
1212 int Result = -1;
1216 break;
1218
1219
1221 break;
1223 switch (Predicate) {
1225 Result = 1; break;
1227 Result = 0; break;
1228 default:
1229 break;
1230 }
1231 break;
1233 switch (Predicate) {
1235 Result = 1; break;
1237 Result = 0; break;
1238 default:
1239 break;
1240 }
1241 break;
1243 switch (Predicate) {
1245 Result = 1; break;
1247 Result = 0; break;
1248 default:
1249 break;
1250 }
1251 break;
1253 switch (Predicate) {
1255 Result = 1; break;
1257 Result = 0; break;
1258 default:
1259 break;
1260 }
1261 break;
1264 Result = 0;
1266 Result = 1;
1267 break;
1270 Result = 0;
1272 Result = 1;
1273 break;
1276 Result = 0;
1278 Result = 1;
1279 break;
1282 Result = 0;
1284 Result = 1;
1285 break;
1288 Result = 0;
1290 Result = 1;
1291 break;
1292 }
1293
1294
1295 if (Result != -1)
1296 return ConstantInt::get(ResultTy, Result);
1297
1300
1301
1302
1305 }
1306 }
1307 return nullptr;
1308}
1309
1311 std::optional InRange,
1313 if (Idxs.empty()) return C;
1314
1317
1320
1323
1324 auto IsNoOp = [&]() {
1325
1327 return false;
1328
1332 });
1333 };
1334 if (IsNoOp())
1335 return GEPTy->isVectorTy() && ->getType()->isVectorTy()
1338 : C;
1339
1340 return nullptr;
1341}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements the APSInt class, which is a simple class that represents an arbitrary sized int...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static unsigned foldConstantCastPair(unsigned opc, ConstantExpr *Op, Type *DstTy)
This function determines which opcode to use to fold two constant cast expressions together.
Definition ConstantFold.cpp:44
static Constant * foldMaybeUndesirableCast(unsigned opc, Constant *V, Type *DestTy)
Definition ConstantFold.cpp:117
static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, const GlobalValue *GV2)
Definition ConstantFold.cpp:957
static Constant * FoldBitCast(Constant *V, Type *DestTy)
Definition ConstantFold.cpp:62
static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2)
This function determines if there is anything we can decide about the two constants provided.
Definition ConstantFold.cpp:987
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Module.h This file contains the declarations for the Module class.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static bool InRange(int64_t Value, unsigned short Shift, int LBound, int HBound)
const SmallVectorImpl< MachineOperand > & Cond
This file defines the SmallVector class.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
static constexpr roundingMode rmTowardZero
static constexpr roundingMode rmNearestTiesToEven
opStatus divide(const APFloat &RHS, roundingMode RM)
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
opStatus subtract(const APFloat &RHS, roundingMode RM)
opStatus add(const APFloat &RHS, roundingMode RM)
opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM)
opStatus multiply(const APFloat &RHS, roundingMode RM)
opStatus mod(const APFloat &RHS)
Class for arbitrary precision integers.
LLVM_ABI APInt udiv(const APInt &RHS) const
Unsigned division operation.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
LLVM_ABI APInt urem(const APInt &RHS) const
Unsigned remainder operation.
unsigned getBitWidth() const
Return the number of bits in the APInt.
LLVM_ABI APInt sdiv(const APInt &RHS) const
Signed division function for APInt.
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
LLVM_ABI APInt srem(const APInt &RHS) const
Function for signed remainder operation.
APInt shl(unsigned shiftAmt) const
Left-shift function.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
An arbitrary precision integer that knows its signedness.
static bool isSameValue(const APSInt &I1, const APSInt &I2)
Determine if two APSInts have the same value, zero- or sign-extending as needed.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
The address of a basic block.
static LLVM_ABI unsigned isEliminableCastPair(Instruction::CastOps firstOpcode, Instruction::CastOps secondOpcode, Type *SrcTy, Type *MidTy, Type *DstTy, const DataLayout *DL)
Determine how a pair of casts can be eliminated, if they can be at all.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
bool isTrueWhenEqual() const
This is just a convenience.
static LLVM_ABI bool isUnordered(Predicate predicate)
Determine if the predicate is an unordered operation.
static bool isIntPredicate(Predicate P)
static LLVM_ABI Constant * get(ArrayType *T, ArrayRef< Constant * > V)
A constant value that is initialized with an expression using other constant values.
static LLVM_ABI Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
static LLVM_ABI bool isDesirableCastOp(unsigned Opcode)
Whether creating a constant expression for this cast is desirable.
static LLVM_ABI Constant * getBinOpAbsorber(unsigned Opcode, Type *Ty, bool AllowLHSConstant=false)
Return the absorbing element for the given binary operation, i.e.
static LLVM_ABI Constant * getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced=false)
Convenience function for getting a Cast operation.
static LLVM_ABI Constant * getNot(Constant *C)
static LLVM_ABI Constant * getXor(Constant *C1, Constant *C2)
static LLVM_ABI Constant * get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags=0, Type *OnlyIfReducedTy=nullptr)
get - Return a binary or shift operator constant expression, folding if possible.
static LLVM_ABI bool isDesirableBinOp(unsigned Opcode)
Whether creating a constant expression for this binary operator is desirable.
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
ConstantFP - Floating Point Values [float, double].
static LLVM_ABI Constant * getNaN(Type *Ty, bool Negative=false, uint64_t Payload=0)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
bool uge(uint64_t Num) const
This function will return true iff this constant represents a value with active bits bigger than 64 b...
static LLVM_ABI Constant * get(StructType *T, ArrayRef< Constant * > V)
Constant Vector Declarations.
static LLVM_ABI Constant * getSplat(ElementCount EC, Constant *Elt)
Return a ConstantVector with the specified constant in each element.
static LLVM_ABI Constant * get(ArrayRef< Constant * > V)
This is an important base class in LLVM.
LLVM_ABI Constant * getSplatValue(bool AllowPoison=false) const
If all elements of the vector constant have the same value, return that value.
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
A parsed version of the target data layout string in and methods for querying it.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
static LLVM_ABI bool compare(const APFloat &LHS, const APFloat &RHS, FCmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
bool isInBounds() const
Test whether this is an inbounds GEP, as defined by LangRef.html.
bool hasAllZeroIndices() const
Return true if all of the indices of this GEP are zeros.
static Type * getGEPReturnType(Value *Ptr, ArrayRef< Value * > IdxList)
Returns the pointer type returned by the GEP instruction, which may be a vector of pointers.
Module * getParent()
Get the module that this global value is contained inside of...
static LLVM_ABI bool compare(const APInt &LHS, const APInt &RHS, ICmpInst::Predicate Pred)
Return result of LHS Pred RHS comparison.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
LLVM_ABI bool isAssociative() const LLVM_READONLY
Return true if the instruction is associative:
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
A Module instance is used to store all the information related to an LLVM module.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Class to represent struct types.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
bool isPointerTy() const
True if this is an instance of PointerType.
bool isPPC_FP128Ty() const
Return true if this is powerpc long double.
LLVM_ABI bool isFirstClassType() const
Return true if the type is "first class", meaning it is a valid type for a Value.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isX86_AMXTy() const
Return true if this is X86 AMX.
bool isIntegerTy() const
True if this is an instance of IntegerType.
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
LLVM_ABI const fltSemantics & getFltSemantics() const
static LLVM_ABI UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
bool match(Val *V, const Pattern &P)
cstfp_pred_ty< is_neg_zero_fp > m_NegZeroFP()
Match a floating-point negative zero.
auto m_Undef()
Match an arbitrary undef constant.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
This is an optimization pass for GlobalISel generic memory operations.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Constant * ConstantFoldSelectInstruction(Constant *Cond, Constant *V1, Constant *V2)
Attempt to constant fold a select instruction with the specified operands.
Definition ConstantFold.cpp:256
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
LLVM_ABI Constant * ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, Constant *C1, Constant *C2)
Definition ConstantFold.cpp:1096
LLVM_ABI Constant * ConstantFoldUnaryInstruction(unsigned Opcode, Constant *V)
Definition ConstantFold.cpp:540
LLVM_ABI Constant * ConstantFoldGetElementPtr(Type *Ty, Constant *C, std::optional< ConstantRange > InRange, ArrayRef< Value * > Idxs)
Definition ConstantFold.cpp:1310
LLVM_ABI Constant * ConstantFoldExtractValueInstruction(Constant *Agg, ArrayRef< unsigned > Idxs)
Attempt to constant fold an extractvalue instruction with the specified operands and indices.
Definition ConstantFold.cpp:499
LLVM_ABI bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
LLVM_ABI Constant * ConstantFoldInsertElementInstruction(Constant *Val, Constant *Elt, Constant *Idx)
Attempt to constant fold an insertelement instruction with the specified operands and indices.
Definition ConstantFold.cpp:398
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
LLVM_ABI Constant * ConstantFoldExtractElementInstruction(Constant *Val, Constant *Idx)
Attempt to constant fold an extractelement instruction with the specified operands and indices.
Definition ConstantFold.cpp:334
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
APFloat neg(APFloat X)
Returns the negated value of the argument.
LLVM_ABI Constant * ConstantFoldCastInstruction(unsigned opcode, Constant *V, Type *DestTy)
Definition ConstantFold.cpp:124
LLVM_ABI Constant * ConstantFoldInsertValueInstruction(Constant *Agg, Constant *Val, ArrayRef< unsigned > Idxs)
Attempt to constant fold an insertvalue instruction with the specified operands and indices.
Definition ConstantFold.cpp:511
unsigned Log2(Align A)
Returns the log2 of the alignment.
LLVM_ABI Constant * ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, ArrayRef< int > Mask)
Attempt to constant fold a shufflevector instruction with the specified operands and mask.
Definition ConstantFold.cpp:440
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
Definition ConstantFold.cpp:598
This struct is a compact representation of a valid (non-zero power of two) alignment.