LLVM: lib/MCA/InstrBuilder.cpp Source File (original) (raw)

1

2

3

4

5

6

7

8

9

10

11

12

13

23

24#define DEBUG_TYPE "llvm-mca-instrbuilder"

25

26namespace llvm {

27namespace mca {

28

30

36 : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), IM(im), FirstCallInst(true),

37 FirstReturnInst(true), CallLatency(cl) {

41}

42

48

49

50 using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;

52

53

54

55

56

57

58

59

60

61

62

64

66 APInt Buffers(NumProcResources, 0);

67

68 bool AllInOrderResources = true;

69 bool AnyDispatchHazards = false;

74#ifndef NDEBUG

76 << "Ignoring invalid write of zero cycles on processor resource "

77 << PR.Name << "\n";

79 << " (write index #" << I << ")\n";

80#endif

81 continue;

82 }

83

86 AllInOrderResources = false;

87 } else {

89 AnyDispatchHazards |= (PR.BufferSize == 0);

90 AllInOrderResources &= (PR.BufferSize <= 1);

91 }

92

98 }

99 }

100

101 ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;

102

103

104

105 sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {

108 if (popcntA < popcntB)

109 return true;

110 if (popcntA > popcntB)

111 return false;

112 return A.first < B.first;

113 });

114

115 uint64_t UsedResourceUnits = 0;

116 uint64_t UsedResourceGroups = 0;

117 uint64_t UnitsFromResourceGroups = 0;

118

119

120

121 ID.HasPartiallyOverlappingGroups = false;

122

123 for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {

124 ResourcePlusCycles &A = Worklist[I];

125 if (A.second.size()) {

128 continue;

129 }

130

131 ID.Resources.emplace_back(A);

132 uint64_t NormalizedMask = A.first;

133

135 UsedResourceUnits |= A.first;

136 } else {

137

139 if (UnitsFromResourceGroups & NormalizedMask)

140 ID.HasPartiallyOverlappingGroups = true;

141

142 UnitsFromResourceGroups |= NormalizedMask;

143 UsedResourceGroups |= (A.first ^ NormalizedMask);

144 }

145

146 for (unsigned J = I + 1; J < E; ++J) {

147 ResourcePlusCycles &B = Worklist[J];

148 if ((NormalizedMask & B.first) == NormalizedMask) {

149 B.second.CS.subtract(A.second.size() - SuperResources[A.first]);

151 B.second.NumUnits++;

152 }

153 }

154 }

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173 for (ResourcePlusCycles &RPC : ID.Resources) {

174 if (llvm::popcount(RPC.first) > 1 && !RPC.second.isReserved()) {

175

178 if (RPC.second.NumUnits > (unsigned)llvm::popcount(Mask)) {

179 RPC.second.setReserved();

180 RPC.second.NumUnits = MaxResourceUnits;

181 }

182 }

183 }

184

185

186 for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {

187 for (unsigned I = 1, E = NumProcResources; I < E; ++I) {

190 continue;

191

192 uint64_t Mask = ProcResourceMasks[I];

193 if (Mask != SR.first && ((Mask & SR.first) == SR.first))

195 }

196 }

197

199 ID.UsedProcResUnits = UsedResourceUnits;

200 ID.UsedProcResGroups = UsedResourceGroups;

201

203 for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)

204 dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "

205 << "Reserved=" << R.second.isReserved() << ", "

206 << "#Units=" << R.second.NumUnits << ", "

207 << "cy=" << R.second.size() << '\n';

209 while (BufferIDs) {

210 uint64_t Current = BufferIDs & (-BufferIDs);

211 dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';

212 BufferIDs ^= Current;

213 }

214 dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';

215 dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)

216 << '\n';

217 dbgs() << "\t\tHasPartiallyOverlappingGroups="

218 << ID.HasPartiallyOverlappingGroups << '\n';

219 });

220}

221

225 unsigned CallLatency) {

226 if (MCDesc.isCall()) {

227

228

229 ID.MaxLatency = CallLatency;

230 return;

231 }

232

234

235

236 ID.MaxLatency = Latency < 0 ? CallLatency : static_cast(Latency);

237}

238

240

241 unsigned I, E;

242 unsigned NumExplicitDefs = MCDesc.getNumDefs();

245 if (Op.isReg())

246 --NumExplicitDefs;

247 }

248

249 if (NumExplicitDefs) {

250 return make_error<InstructionError>(

251 "Expected more register operand definitions.", MCI);

252 }

253

255

258 std::string Message =

259 "expected a register operand for an optional definition. Instruction "

260 "has not been correctly analyzed.";

261 return make_error<InstructionError>(Message, MCI);

262 }

263 }

264

266}

267

268void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,

269 unsigned SchedClassID) {

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317 unsigned NumExplicitDefs = MCDesc.getNumDefs();

318 unsigned NumImplicitDefs = MCDesc.implicit_defs().size();

320 unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;

322 TotalDefs++;

323

325 ID.Writes.resize(TotalDefs + NumVariadicOps);

326

327

328

329 unsigned CurrentDef = 0;

330 unsigned OptionalDefIdx = MCDesc.getNumOperands() - 1;

331 unsigned i = 0;

332 for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {

334 if (Op.isReg())

335 continue;

336

337 if (MCDesc.operands()[CurrentDef].isOptionalDef()) {

338 OptionalDefIdx = CurrentDef++;

339 continue;

340 }

342 CurrentDef++;

343 continue;

344 }

345

346 WriteDescriptor &Write = ID.Writes[CurrentDef];

347 Write.OpIndex = i;

348 if (CurrentDef < NumWriteLatencyEntries) {

349 const MCWriteLatencyEntry &WLE =

351

353 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);

354 Write.SClassOrWriteResourceID = WLE.WriteResourceID;

355 } else {

356

357 Write.Latency = ID.MaxLatency;

358 Write.SClassOrWriteResourceID = 0;

359 }

360 Write.IsOptionalDef = false;

362 dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex

363 << ", Latency=" << Write.Latency

364 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';

365 });

366 CurrentDef++;

367 }

368

369 assert(CurrentDef == NumExplicitDefs &&

370 "Expected more register operand definitions.");

371 for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {

372 unsigned Index = NumExplicitDefs + CurrentDef;

374 Write.OpIndex = ~CurrentDef;

376 if (Index < NumWriteLatencyEntries) {

377 const MCWriteLatencyEntry &WLE =

379

381 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);

382 Write.SClassOrWriteResourceID = WLE.WriteResourceID;

383 } else {

384

385 Write.Latency = ID.MaxLatency;

386 Write.SClassOrWriteResourceID = 0;

387 }

388

389 Write.IsOptionalDef = false;

390 assert(Write.RegisterID != 0 && "Expected a valid phys register!");

392 dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex

393 << ", PhysReg=" << MRI.getName(Write.RegisterID)

394 << ", Latency=" << Write.Latency

395 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';

396 });

397 }

398

400 WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];

401 Write.OpIndex = OptionalDefIdx;

402

403 Write.Latency = ID.MaxLatency;

404 Write.SClassOrWriteResourceID = 0;

405 Write.IsOptionalDef = true;

407 dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex

408 << ", Latency=" << Write.Latency

409 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';

410 });

411 }

412

413 if (!NumVariadicOps)

414 return;

415

417 CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();

419 I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {

421 if (Op.isReg())

422 continue;

424 continue;

425

426 WriteDescriptor &Write = ID.Writes[CurrentDef];

428

429 Write.Latency = ID.MaxLatency;

430 Write.SClassOrWriteResourceID = 0;

431 Write.IsOptionalDef = false;

432 ++CurrentDef;

434 dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex

435 << ", Latency=" << Write.Latency

436 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';

437 });

438 }

439

440 ID.Writes.resize(CurrentDef);

441}

442

443void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,

444 unsigned SchedClassID) {

445 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());

446 unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();

447 unsigned NumImplicitUses = MCDesc.implicit_uses().size();

448

449 if (MCDesc.hasOptionalDef())

450 --NumExplicitUses;

451 unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();

452 unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;

453 ID.Reads.resize(TotalUses);

454 unsigned CurrentUse = 0;

455 for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;

457 const MCOperand &Op = MCI.getOperand(OpIndex);

458 if (Op.isReg())

459 continue;

461 continue;

462

463 ReadDescriptor &Read = ID.Reads[CurrentUse];

465 Read.UseIndex = I;

466 Read.SchedClassID = SchedClassID;

467 ++CurrentUse;

469 << ", UseIndex=" << Read.UseIndex << '\n');

470 }

471

472

473

474 for (unsigned I = 0; I < NumImplicitUses; ++I) {

475 ReadDescriptor &Read = ID.Reads[CurrentUse + I];

476 Read.OpIndex = ~I;

477 Read.UseIndex = NumExplicitUses + I;

478 Read.RegisterID = MCDesc.implicit_uses()[I];

480 continue;

481 Read.SchedClassID = SchedClassID;

483 << ", UseIndex=" << Read.UseIndex << ", RegisterID="

484 << MRI.getName(Read.RegisterID) << '\n');

485 }

486

487 CurrentUse += NumImplicitUses;

488

489 bool AssumeDefsOnly = MCDesc.variadicOpsAreDefs();

490 for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();

491 I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {

492 const MCOperand &Op = MCI.getOperand(OpIndex);

493 if (Op.isReg())

494 continue;

495

496 ReadDescriptor &Read = ID.Reads[CurrentUse];

498 Read.UseIndex = NumExplicitUses + NumImplicitUses + I;

499 Read.SchedClassID = SchedClassID;

500 ++CurrentUse;

502 << ", UseIndex=" << Read.UseIndex << '\n');

503 }

504

505 ID.Reads.resize(CurrentUse);

506}

507

513

514 return TypeHash;

515}

516

520 InstructionHash =

522 }

523 return InstructionHash;

524}

525

526Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,

527 const MCInst &MCI) const {

528 if (ID.NumMicroOps != 0)

530

531 bool UsesBuffers = ID.UsedBuffers;

532 bool UsesResources = ID.Resources.empty();

533 if (!UsesBuffers && !UsesResources)

535

536

537

538 StringRef Message = "found an inconsistent instruction that decodes to zero "

539 "opcodes and that consumes scheduler resources.";

540 return make_error<InstructionError>(std::string(Message), MCI);

541}

542

543Expected InstrBuilder::getVariantSchedClassID(const MCInst &MCI,

544 unsigned SchedClassID) {

547 while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())

548 SchedClassID =

550

551 if (!SchedClassID) {

552 return make_error<InstructionError>(

553 "unable to resolve scheduling class for write variant.", MCI);

554 }

555

556 return SchedClassID;

557}

558

559Expected<const InstrDesc &>

560InstrBuilder::createInstrDescImpl(const MCInst &MCI,

561 const SmallVector<Instrument *> &IVec) {

563 "Itineraries are not yet supported!");

564

565

566 unsigned short Opcode = MCI.getOpcode();

567 const MCInstrDesc &MCDesc = MCII.get(Opcode);

569

570

571

572 unsigned SchedClassID = IM.getSchedClassID(MCII, MCI, IVec);

573 bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();

574

575

576 if (IsVariant) {

577 Expected VariantSchedClassIDOrErr =

578 getVariantSchedClassID(MCI, SchedClassID);

579 if (!VariantSchedClassIDOrErr) {

580 return VariantSchedClassIDOrErr.takeError();

581 }

582

583 SchedClassID = *VariantSchedClassIDOrErr;

584 }

585

586

587 const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);

589 return make_error<InstructionError>(

590 "found an unsupported instruction in the input assembly sequence", MCI);

591 }

592

594 LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');

595 LLVM_DEBUG(dbgs() << "\t\tOpcode=" << Opcode << '\n');

596

597

598 std::unique_ptr ID = std::make_unique();

599 ID->NumMicroOps = SCDesc.NumMicroOps;

600 ID->SchedClassID = SchedClassID;

601

602 if (MCDesc.isCall() && FirstCallInst) {

603

604 WithColor::warning() << "found a call in the input assembly sequence.\n";

605 WithColor::note() << "call instructions are not correctly modeled. "

606 << "Assume a latency of " << CallLatency << "cy.\n";

607 FirstCallInst = false;

608 }

609

610 if (MCDesc.isReturn() && FirstReturnInst) {

612 << " assembly sequence.\n";

613 WithColor::note() << "program counter updates are ignored.\n";

614 FirstReturnInst = false;

615 }

616

619

621 return std::move(Err);

622

623 populateWrites(*ID, MCI, SchedClassID);

624 populateReads(*ID, MCI, SchedClassID);

625

626 LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');

627 LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');

628

629

630 if (Error Err = verifyInstrDesc(*ID, MCI))

631 return std::move(Err);

632

633

634 bool IsVariadic = MCDesc.isVariadic();

635 if ((ID->IsRecyclable = !IsVariadic && !IsVariant)) {

636 auto DKey = std::make_pair(MCI.getOpcode(), SchedClassID);

637 Descriptors[DKey] = std::move(ID);

638 return *Descriptors[DKey];

639 }

640

641 auto VDKey = std::make_pair(hashMCInst(MCI), SchedClassID);

643 !VariantDescriptors.contains(VDKey) &&

644 "Expected VariantDescriptors to not already have a value for this key.");

645 VariantDescriptors[VDKey] = std::move(ID);

646 return *VariantDescriptors[VDKey];

647}

648

649Expected<const InstrDesc &>

650InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI,

651 const SmallVector<Instrument *> &IVec) {

652

653 unsigned SchedClassID = IM.getSchedClassID(MCII, MCI, IVec);

654

655 auto DKey = std::make_pair(MCI.getOpcode(), SchedClassID);

656 if (Descriptors.find_as(DKey) != Descriptors.end())

657 return *Descriptors[DKey];

658

659 Expected VariantSchedClassIDOrErr =

660 getVariantSchedClassID(MCI, SchedClassID);

661 if (!VariantSchedClassIDOrErr) {

662 return VariantSchedClassIDOrErr.takeError();

663 }

664

665 SchedClassID = *VariantSchedClassIDOrErr;

666

667 auto VDKey = std::make_pair(hashMCInst(MCI), SchedClassID);

668 auto It = VariantDescriptors.find(VDKey);

669 if (It != VariantDescriptors.end())

670 return *It->second;

671

672 return createInstrDescImpl(MCI, IVec);

673}

674

675STATISTIC(NumVariantInst, "Number of MCInsts that doesn't have static Desc");

676

681 if (!DescOrErr)

685 std::unique_ptr CreatedIS;

686 bool IsInstRecycled = false;

687

688 if (D.IsRecyclable)

689 ++NumVariantInst;

690

691 if (D.IsRecyclable && InstRecycleCB) {

692 if (auto *I = InstRecycleCB(D)) {

693 NewIS = I;

695 IsInstRecycled = true;

696 }

697 }

698 if (!IsInstRecycled) {

699 CreatedIS = std::make_unique(D, MCI.getOpcode());

700 NewIS = CreatedIS.get();

701 }

702

706

713

714

716

717 bool IsZeroIdiom = false;

718 bool IsDepBreaking = false;

719 if (MCIA) {

721 IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);

722 IsDepBreaking =

726 }

727

728

730 size_t Idx = 0U;

733

735

736 if (Op.isReg())

737 continue;

738 RegID = Op.getReg();

739 } else {

740

742 }

743

744

745 if (!RegID)

746 continue;

747

748

750 if (IsInstRecycled && Idx < NewIS->getUses().size()) {

753 } else {

754 NewIS->getUses().emplace_back(RD, RegID);

755 RS = &NewIS->getUses().back();

757 }

758

759 if (IsDepBreaking) {

760

761

762 if (Mask.isZero()) {

765 } else {

766

767

768

769

770

771 if (Mask.getBitWidth() > RD.UseIndex) {

772

775 }

776 }

777 }

778 }

779 if (IsInstRecycled && Idx < NewIS->getUses().size())

781

782

783 if (D.Writes.empty()) {

784 if (IsInstRecycled)

785 return llvm::make_error(NewIS);

786 else

787 return std::move(CreatedIS);

788 }

789

790

791

792 APInt WriteMask(D.Writes.size(), 0);

793

794

795

796 if (MCIA)

798

799

800 unsigned WriteIndex = 0;

801 Idx = 0U;

805

806

808 ++WriteIndex;

809 continue;

810 }

811

812 assert(RegID && "Expected a valid register ID!");

813 if (IsInstRecycled && Idx < NewIS->getDefs().size()) {

816 WriteMask[WriteIndex],

817 IsZeroIdiom);

818 } else {

819 NewIS->getDefs().emplace_back(WD, RegID,

820 WriteMask[WriteIndex],

821 IsZeroIdiom);

823 }

824 ++WriteIndex;

825 }

826 if (IsInstRecycled && Idx < NewIS->getDefs().size())

828

829 if (IsInstRecycled)

830 return llvm::make_error(NewIS);

831 else

832 return std::move(CreatedIS);

833}

834}

835}

unsigned const MachineRegisterInfo * MRI

This file implements a class to represent arbitrary precision integral constant values and operations...

static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")

static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")

static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")

static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")

Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx

This file defines the DenseMap class.

A builder class for instructions that are statically analyzed by llvm-mca.

while(!ToSimplify.empty())

assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())

This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...

#define STATISTIC(VARNAME, DESC)

Class for arbitrary precision integers.

uint64_t getZExtValue() const

Get zero extended value.

void setBit(unsigned BitPosition)

Set the given bit to 1 whose position is given as "bitPosition".

ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...

This class represents an Operation in the Expression.

Subclass of Error for the sole purpose of identifying the success path in the type system.

Lightweight error class with error context and mandatory checking.

Tagged union holding either a T or a Error.

Error takeError()

Take ownership of the stored error.

Instances of this class represent a single low-level machine instruction.

unsigned getNumOperands() const

unsigned getFlags() const

unsigned getOpcode() const

const MCOperand & getOperand(unsigned i) const

virtual bool isOptimizableRegisterMove(const MCInst &MI, unsigned CPUID) const

Returns true if MI is a candidate for move elimination.

virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask, unsigned CPUID) const

Returns true if MI is a dependency breaking instruction for the subtarget associated with CPUID .

virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask, unsigned CPUID) const

Returns true if MI is a dependency breaking zero-idiom for the given subtarget.

virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, APInt &Writes) const

Returns true if at least one of the register writes performed by.

Describe properties that are true of each instruction in the target description file.

unsigned getNumOperands() const

Return the number of declared MachineOperands for this MachineInstruction.

ArrayRef< MCOperandInfo > operands() const

bool mayStore() const

Return true if this instruction could possibly modify memory.

bool mayLoad() const

Return true if this instruction could possibly read memory.

bool hasOptionalDef() const

Set if this instruction has an optional definition, e.g.

unsigned getNumDefs() const

Return the number of MachineOperands that are register definitions.

bool variadicOpsAreDefs() const

Return true if variadic operands of this instruction are definitions.

ArrayRef< MCPhysReg > implicit_defs() const

Return a list of registers that are potentially written by any instance of this machine instruction.

bool hasUnmodeledSideEffects() const

Return true if this instruction has side effects that are not modeled by other flags.

bool isCall() const

Return true if the instruction is a call.

Interface to description of machine instruction set.

const MCInstrDesc & get(unsigned Opcode) const

Return the machine instruction descriptor that corresponds to the specified instruction opcode.

StringRef getName(unsigned Opcode) const

Returns the name for the instructions with the given opcode.

Instances of this class represent operands of the MCInst class.

MCRegister getReg() const

Returns the register number.

MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...

const char * getName(MCRegister RegNo) const

Return the human-readable symbolic target-specific name for the specified physical register.

bool isConstant(MCRegister RegNo) const

Returns true if the given register is constant.

Wrapper class representing physical registers. Should be passed by value.

Generic base class for all target subtargets.

virtual unsigned resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) const

Resolve a variant scheduling class for the given MCInst and CPU.

const MCWriteLatencyEntry * getWriteLatencyEntry(const MCSchedClassDesc *SC, unsigned DefIdx) const

const MCWriteProcResEntry * getWriteProcResBegin(const MCSchedClassDesc *SC) const

Return an iterator at the first process resource consumed by the given scheduling class.

const MCSchedModel & getSchedModel() const

Get the machine model for this subtarget's CPU.

reference emplace_back(ArgTypes &&... Args)

This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.

StringRef - Represent a constant reference to a string, i.e.

static raw_ostream & warning()

Convenience method for printing "warning: " to stderr.

static raw_ostream & note()

Convenience method for printing "note: " to stderr.

An opaque object representing a hash code.

Expected< std::unique_ptr< Instruction > > createInstruction(const MCInst &MCI, const SmallVector< Instrument * > &IVec)

void setEndGroup(bool newVal)

void setRetireOOO(bool newVal)

SmallVectorImpl< WriteState > & getDefs()

void setBeginGroup(bool newVal)

SmallVectorImpl< ReadState > & getUses()

void setHasSideEffects(bool newVal)

void setMayStore(bool newVal)

void setOptimizableMove()

void setMayLoad(bool newVal)

An instruction propagated through the simulated instruction pipeline.

This class allows targets to optionally customize the logic that resolves scheduling class IDs.

virtual unsigned getSchedClassID(const MCInstrInfo &MCII, const MCInst &MCI, const SmallVector< Instrument * > &IVec) const

Given an MCInst and a vector of Instrument, a target can return a SchedClassID.

Tracks register operand latency in cycles.

void setIndependentFromDef()

Tracks uses of a register definition (e.g.

unsigned ID

LLVM IR allows to use arbitrary numbers as calling convention identifiers.

hash_code hashMCInst(const MCInst &MCI)

static void initializeUsedResources(InstrDesc &ID, const MCSchedClassDesc &SCDesc, const MCSubtargetInfo &STI, ArrayRef< uint64_t > ProcResourceMasks)

hash_code hashMCOperand(const MCOperand &MCO)

static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc, const MCSchedClassDesc &SCDesc, const MCSubtargetInfo &STI, unsigned CallLatency)

void computeProcResourceMasks(const MCSchedModel &SM, MutableArrayRef< uint64_t > Masks)

Populates vector Masks with processor resource masks.

unsigned getResourceStateIndex(uint64_t Mask)

static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI)

This is an optimization pass for GlobalISel generic memory operations.

int popcount(T Value) noexcept

Count the number of set bits in a value.

auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)

Get the size of a range.

void sort(IteratorTy Start, IteratorTy End)

raw_ostream & dbgs()

dbgs() - This returns a reference to a raw_ostream for debugging messages.

FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)

format_hex - Output N as a fixed width hexadecimal.

DWARFExpression::Operation Op

hash_code hash_combine(const Ts &...args)

Combine values into a single hash_code.

T bit_floor(T Value)

Returns the largest integral power of two no greater than Value if Value is nonzero.

Define a kind of processor resource that will be modeled by the scheduler.

Summarize the scheduling resources required for an instruction of a particular scheduling class.

static const unsigned short InvalidNumMicroOps

uint16_t NumWriteLatencyEntries

uint16_t NumWriteProcResEntries

Machine model for scheduling, bundling, and heuristics.

const MCSchedClassDesc * getSchedClassDesc(unsigned SchedClassIdx) const

unsigned getProcessorID() const

unsigned getNumProcResourceKinds() const

bool hasInstrSchedModel() const

Does this machine model include instruction-level scheduling.

static int computeInstrLatency(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)

Returns the latency value for the scheduling class.

const MCProcResourceDesc * getProcResource(unsigned ProcResourceIdx) const

Identify one of the processor resource kinds consumed by a particular scheduling class for the specif...

uint16_t ReleaseAtCycle

Cycle at which the resource will be released by an instruction, relatively to the cycle in which the ...

An instruction descriptor.

A register read descriptor.

bool isImplicitRead() const

Helper used by class InstrDesc to describe how hardware resources are used.

A register write descriptor.

bool isImplicitWrite() const