LLVM: lib/MCA/InstrBuilder.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
23
24#define DEBUG_TYPE "llvm-mca-instrbuilder"
25
26namespace llvm {
27namespace mca {
28
30
36 : STI(sti), MCII(mcii), MRI(mri), MCIA(mcia), IM(im), FirstCallInst(true),
37 FirstReturnInst(true), CallLatency(cl) {
41}
42
48
49
50 using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
52
53
54
55
56
57
58
59
60
61
62
64
66 APInt Buffers(NumProcResources, 0);
67
68 bool AllInOrderResources = true;
69 bool AnyDispatchHazards = false;
74#ifndef NDEBUG
76 << "Ignoring invalid write of zero cycles on processor resource "
77 << PR.Name << "\n";
80 << " (write index #" << I << ")\n";
81#endif
82 continue;
83 }
84
87 AllInOrderResources = false;
88 } else {
90 AnyDispatchHazards |= (PR.BufferSize == 0);
91 AllInOrderResources &= (PR.BufferSize <= 1);
92 }
93
99 }
100 }
101
102 ID.MustIssueImmediately = AllInOrderResources && AnyDispatchHazards;
103
104
105
106 sort(Worklist, [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
109 if (popcntA < popcntB)
110 return true;
111 if (popcntA > popcntB)
112 return false;
114 });
115
116 uint64_t UsedResourceUnits = 0;
117 uint64_t UsedResourceGroups = 0;
118 uint64_t UnitsFromResourceGroups = 0;
119
120
121
122 ID.HasPartiallyOverlappingGroups = false;
123
124 for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
125 ResourcePlusCycles &A = Worklist[I];
126 if (.second.size()) {
129 continue;
130 }
131
132 ID.Resources.emplace_back(A);
133 uint64_t NormalizedMask = A.first;
134
136 UsedResourceUnits |= A.first;
137 } else {
138
140 if (UnitsFromResourceGroups & NormalizedMask)
141 ID.HasPartiallyOverlappingGroups = true;
142
143 UnitsFromResourceGroups |= NormalizedMask;
144 UsedResourceGroups |= (A.first ^ NormalizedMask);
145 }
146
147 for (unsigned J = I + 1; J < E; ++J) {
148 ResourcePlusCycles &B = Worklist[J];
149 if ((NormalizedMask & B.first) == NormalizedMask) {
150 B.second.CS.subtract(A.second.size() - SuperResources[A.first]);
152 B.second.NumUnits++;
153 }
154 }
155 }
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174 for (ResourcePlusCycles &RPC : ID.Resources) {
175 if (llvm::popcount(RPC.first) > 1 && !RPC.second.isReserved()) {
176
179 if (RPC.second.NumUnits > (unsigned)llvm::popcount(Mask)) {
180 RPC.second.setReserved();
181 RPC.second.NumUnits = MaxResourceUnits;
182 }
183 }
184 }
185
186
187 for (const std::pair<uint64_t, unsigned> &SR : SuperResources) {
188 for (unsigned I = 1, E = NumProcResources; I < E; ++I) {
191 continue;
192
193 uint64_t Mask = ProcResourceMasks[I];
194 if (Mask != SR.first && ((Mask & SR.first) == SR.first))
196 }
197 }
198
200 ID.UsedProcResUnits = UsedResourceUnits;
201 ID.UsedProcResGroups = UsedResourceGroups;
202
204 for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
205 dbgs() << "\t\tResource Mask=" << format_hex(R.first, 16) << ", "
206 << "Reserved=" << R.second.isReserved() << ", "
207 << "#Units=" << R.second.NumUnits << ", "
208 << "cy=" << R.second.size() << '\n';
210 while (BufferIDs) {
211 uint64_t Current = BufferIDs & (-BufferIDs);
212 dbgs() << "\t\tBuffer Mask=" << format_hex(Current, 16) << '\n';
213 BufferIDs ^= Current;
214 }
215 dbgs() << "\t\t Used Units=" << format_hex(ID.UsedProcResUnits, 16) << '\n';
216 dbgs() << "\t\tUsed Groups=" << format_hex(ID.UsedProcResGroups, 16)
217 << '\n';
218 dbgs() << "\t\tHasPartiallyOverlappingGroups="
219 << ID.HasPartiallyOverlappingGroups << '\n';
220 });
221}
222
225 bool IsCall) {
226 if (IsCall) {
227
228
229 ID.MaxLatency = CallLatency;
230 return;
231 }
232
234
235
237}
238
240
242 unsigned NumExplicitDefs = MCDesc.getNumDefs();
245 if (Op.isReg())
246 --NumExplicitDefs;
247 }
248
249 if (NumExplicitDefs) {
251 "Expected more register operand definitions.", MCI);
252 }
253
255
258 std::string Message =
259 "expected a register operand for an optional definition. Instruction "
260 "has not been correctly analyzed.";
262 }
263 }
264
266}
267
268void InstrBuilder::populateWrites(InstrDesc &ID, const MCInst &MCI,
269 unsigned SchedClassID) {
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317 unsigned NumExplicitDefs = MCDesc.getNumDefs();
318 unsigned NumImplicitDefs = MCDesc.implicit_defs().size();
320 unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
322 TotalDefs++;
323
325 ID.Writes.resize(TotalDefs + NumVariadicOps);
326
327
328
329 unsigned CurrentDef = 0;
330 unsigned OptionalDefIdx = MCDesc.getNumOperands() - 1;
331 unsigned i = 0;
332 for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
334 if (.isReg())
335 continue;
336
337 if (MCDesc.operands()[CurrentDef].isOptionalDef()) {
338 OptionalDefIdx = CurrentDef++;
339 continue;
340 }
341 if (MRI.isConstant(Op.getReg())) {
342 CurrentDef++;
343 continue;
344 }
345
346 WriteDescriptor &Write = ID.Writes[CurrentDef];
347 Write.OpIndex = i;
348 if (CurrentDef < NumWriteLatencyEntries) {
349 const MCWriteLatencyEntry &WLE =
350 *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
351
353 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
354 Write.SClassOrWriteResourceID = WLE.WriteResourceID;
355 } else {
356
357 Write.Latency = ID.MaxLatency;
358 Write.SClassOrWriteResourceID = 0;
359 }
360 Write.IsOptionalDef = false;
362 dbgs() << "\t\t[Def] OpIdx=" << Write.OpIndex
363 << ", Latency=" << Write.Latency
364 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
365 });
366 CurrentDef++;
367 }
368
369 assert(CurrentDef == NumExplicitDefs &&
370 "Expected more register operand definitions.");
371 for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
372 unsigned Index = NumExplicitDefs + CurrentDef;
374 Write.OpIndex = ~CurrentDef;
376 if (Index < NumWriteLatencyEntries) {
377 const MCWriteLatencyEntry &WLE =
378 *STI.getWriteLatencyEntry(&SCDesc, Index);
379
381 WLE.Cycles < 0 ? ID.MaxLatency : static_cast<unsigned>(WLE.Cycles);
382 Write.SClassOrWriteResourceID = WLE.WriteResourceID;
383 } else {
384
385 Write.Latency = ID.MaxLatency;
386 Write.SClassOrWriteResourceID = 0;
387 }
388
389 Write.IsOptionalDef = false;
390 assert(Write.RegisterID != 0 && "Expected a valid phys register!");
392 dbgs() << "\t\t[Def][I] OpIdx=" << ~Write.OpIndex
393 << ", PhysReg=" << MRI.getName(Write.RegisterID)
394 << ", Latency=" << Write.Latency
395 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
396 });
397 }
398
400 WriteDescriptor &Write = ID.Writes[NumExplicitDefs + NumImplicitDefs];
401 Write.OpIndex = OptionalDefIdx;
402
403 Write.Latency = ID.MaxLatency;
404 Write.SClassOrWriteResourceID = 0;
405 Write.IsOptionalDef = true;
407 dbgs() << "\t\t[Def][O] OpIdx=" << Write.OpIndex
408 << ", Latency=" << Write.Latency
409 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
410 });
411 }
412
413 if (!NumVariadicOps)
414 return;
415
417 CurrentDef = NumExplicitDefs + NumImplicitDefs + MCDesc.hasOptionalDef();
419 I < NumVariadicOps && !AssumeUsesOnly; ++I, ++OpIndex) {
421 if (.isReg())
422 continue;
423 if (MRI.isConstant(Op.getReg()))
424 continue;
425
426 WriteDescriptor &Write = ID.Writes[CurrentDef];
428
429 Write.Latency = ID.MaxLatency;
430 Write.SClassOrWriteResourceID = 0;
431 Write.IsOptionalDef = false;
432 ++CurrentDef;
434 dbgs() << "\t\t[Def][V] OpIdx=" << Write.OpIndex
435 << ", Latency=" << Write.Latency
436 << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
437 });
438 }
439
440 ID.Writes.resize(CurrentDef);
441}
442
443void InstrBuilder::populateReads(InstrDesc &ID, const MCInst &MCI,
444 unsigned SchedClassID) {
445 const MCInstrDesc &MCDesc = MCII.get(MCI.getOpcode());
446 unsigned NumExplicitUses = MCDesc.getNumOperands() - MCDesc.getNumDefs();
447 unsigned NumImplicitUses = MCDesc.implicit_uses().size();
448
449 if (MCDesc.hasOptionalDef())
450 --NumExplicitUses;
451 unsigned NumVariadicOps = MCI.getNumOperands() - MCDesc.getNumOperands();
452 unsigned TotalUses = NumExplicitUses + NumImplicitUses + NumVariadicOps;
453 ID.Reads.resize(TotalUses);
454 unsigned CurrentUse = 0;
455 for (unsigned I = 0, OpIndex = MCDesc.getNumDefs(); I < NumExplicitUses;
457 const MCOperand &Op = MCI.getOperand(OpIndex);
458 if (.isReg())
459 continue;
460 if (MRI.isConstant(Op.getReg()))
461 continue;
462
463 ReadDescriptor &Read = ID.Reads[CurrentUse];
466 Read.SchedClassID = SchedClassID;
467 ++CurrentUse;
469 << ", UseIndex=" << Read.UseIndex << '\n');
470 }
471
472
473
474 for (unsigned I = 0; I < NumImplicitUses; ++I) {
475 ReadDescriptor &Read = ID.Reads[CurrentUse + I];
476 Read.OpIndex = ~I;
477 Read.UseIndex = NumExplicitUses + I;
478 Read.RegisterID = MCDesc.implicit_uses()[I];
479 if (MRI.isConstant(Read.RegisterID))
480 continue;
481 Read.SchedClassID = SchedClassID;
483 << ", UseIndex=" << Read.UseIndex << ", RegisterID="
484 << MRI.getName(Read.RegisterID) << '\n');
485 }
486
487 CurrentUse += NumImplicitUses;
488
489 bool AssumeDefsOnly = MCDesc.variadicOpsAreDefs();
490 for (unsigned I = 0, OpIndex = MCDesc.getNumOperands();
491 I < NumVariadicOps && !AssumeDefsOnly; ++I, ++OpIndex) {
492 const MCOperand &Op = MCI.getOperand(OpIndex);
493 if (.isReg())
494 continue;
495
496 ReadDescriptor &Read = ID.Reads[CurrentUse];
498 Read.UseIndex = NumExplicitUses + NumImplicitUses + I;
499 Read.SchedClassID = SchedClassID;
500 ++CurrentUse;
502 << ", UseIndex=" << Read.UseIndex << '\n');
503 }
504
505 ID.Reads.resize(CurrentUse);
506}
507
516
520 InstructionHash =
522 }
523 return InstructionHash;
524}
525
526Error InstrBuilder::verifyInstrDesc(const InstrDesc &ID,
527 const MCInst &MCI) const {
528 if (ID.NumMicroOps != 0)
530
531 bool UsesBuffers = ID.UsedBuffers;
532 bool UsesResources = .Resources.empty();
533 if (!UsesBuffers && !UsesResources)
535
536
537
538 StringRef Message = "found an inconsistent instruction that decodes to zero "
539 "opcodes and that consumes scheduler resources.";
541}
542
543Expected InstrBuilder::getVariantSchedClassID(const MCInst &MCI,
544 unsigned SchedClassID) {
547 while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant())
548 SchedClassID =
550
551 if (!SchedClassID) {
553 "unable to resolve scheduling class for write variant.", MCI);
554 }
555
556 return SchedClassID;
557}
558
559Expected<const InstrDesc &>
560InstrBuilder::createInstrDescImpl(const MCInst &MCI,
562 assert(STI.getSchedModel().hasInstrSchedModel() &&
563 "Itineraries are not yet supported!");
564
565
566 unsigned short Opcode = MCI.getOpcode();
567 const MCInstrDesc &MCDesc = MCII.get(Opcode);
568 const MCSchedModel &SM = STI.getSchedModel();
569
570
571
572 unsigned SchedClassID = IM.getSchedClassID(MCII, MCI, IVec);
573 bool IsVariant = SM.getSchedClassDesc(SchedClassID)->isVariant();
574
575
576 if (IsVariant) {
577 Expected VariantSchedClassIDOrErr =
578 getVariantSchedClassID(MCI, SchedClassID);
579 if (!VariantSchedClassIDOrErr) {
580 return VariantSchedClassIDOrErr.takeError();
581 }
582
583 SchedClassID = *VariantSchedClassIDOrErr;
584 }
585
586
587 const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID);
590 "found an unsupported instruction in the input assembly sequence", MCI);
591 }
592
593 LLVM_DEBUG(dbgs() << "\n\t\tOpcode Name= " << MCII.getName(Opcode) << '\n');
594 LLVM_DEBUG(dbgs() << "\t\tSchedClassID=" << SchedClassID << '\n');
595 LLVM_DEBUG(dbgs() << "\t\tOpcode=" << Opcode << '\n');
596
597
598 std::unique_ptr ID = std::make_unique();
599 ID->NumMicroOps = SCDesc.NumMicroOps;
600 ID->SchedClassID = SchedClassID;
601
602 bool IsCall = MCIA->isCall(MCI);
603 if (IsCall && FirstCallInst) {
604
605 WithColor::warning() << "found a call in the input assembly sequence.\n";
606 WithColor::note() << "call instructions are not correctly modeled. "
607 << "Assume a latency of " << CallLatency << "cy.\n";
608 FirstCallInst = false;
609 }
610
611 if (MCIA->isReturn(MCI) && FirstReturnInst) {
613 << " assembly sequence.\n";
614 WithColor::note() << "program counter updates are ignored.\n";
615 FirstReturnInst = false;
616 }
617
620
622 return std::move(Err);
623
624 populateWrites(*ID, MCI, SchedClassID);
625 populateReads(*ID, MCI, SchedClassID);
626
627 LLVM_DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
628 LLVM_DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');
629
630
631 if (Error Err = verifyInstrDesc(*ID, MCI))
632 return std::move(Err);
633
634
635
636 if (IM.canCustomize(IVec)) {
637 IM.customize(IVec, *ID);
638 return *CustomDescriptors.emplace_back(std::move(ID));
639 }
640
641 bool IsVariadic = MCDesc.isVariadic();
642 if ((ID->IsRecyclable = !IsVariadic && !IsVariant)) {
643 auto DKey = std::make_pair(MCI.getOpcode(), SchedClassID);
644 return *(Descriptors[DKey] = std::move(ID));
645 }
646
647 auto VDKey = std::make_pair(hashMCInst(MCI), SchedClassID);
649 !VariantDescriptors.contains(VDKey) &&
650 "Expected VariantDescriptors to not already have a value for this key.");
651 return *(VariantDescriptors[VDKey] = std::move(ID));
652}
653
654Expected<const InstrDesc &>
655InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI,
657
658 unsigned SchedClassID = IM.getSchedClassID(MCII, MCI, IVec);
659
660 auto DKey = std::make_pair(MCI.getOpcode(), SchedClassID);
661 if (Descriptors.find_as(DKey) != Descriptors.end())
662 return *Descriptors[DKey];
663
664 Expected VariantSchedClassIDOrErr =
665 getVariantSchedClassID(MCI, SchedClassID);
666 if (!VariantSchedClassIDOrErr) {
667 return VariantSchedClassIDOrErr.takeError();
668 }
669
670 SchedClassID = *VariantSchedClassIDOrErr;
671
672 auto VDKey = std::make_pair(hashMCInst(MCI), SchedClassID);
673 auto It = VariantDescriptors.find(VDKey);
674 if (It != VariantDescriptors.end())
675 return *It->second;
676
677 return createInstrDescImpl(MCI, IVec);
678}
679
680STATISTIC(NumVariantInst, "Number of MCInsts that doesn't have static Desc");
681
686 ? createInstrDescImpl(MCI, IVec)
687 : getOrCreateInstrDesc(MCI, IVec);
688 if (!DescOrErr)
692 std::unique_ptr CreatedIS;
693 bool IsInstRecycled = false;
694
695 if (.IsRecyclable)
696 ++NumVariantInst;
697
698 if (D.IsRecyclable && InstRecycleCB) {
699 if (auto *I = InstRecycleCB(D)) {
700 NewIS = I;
702 IsInstRecycled = true;
703 }
704 }
705 if (!IsInstRecycled) {
706 CreatedIS = std::make_unique(D, MCI.getOpcode());
707 NewIS = CreatedIS.get();
708 }
709
712 *STI.getSchedModel().getSchedClassDesc(D.SchedClassID);
713
720
721
723
724 bool IsZeroIdiom = false;
725 bool IsDepBreaking = false;
726 if (MCIA) {
727 unsigned ProcID = STI.getSchedModel().getProcessorID();
728 IsZeroIdiom = MCIA->isZeroIdiom(MCI, Mask, ProcID);
729 IsDepBreaking =
730 IsZeroIdiom || MCIA->isDependencyBreaking(MCI, Mask, ProcID);
731 if (MCIA->isOptimizableRegisterMove(MCI, ProcID))
733 }
734
735
737 size_t Idx = 0U;
740
742
743 if (.isReg())
744 continue;
745 RegID = Op.getReg().id();
746 } else {
747
749 }
750
751
752 if (!RegID)
753 continue;
754
755
757 if (IsInstRecycled && Idx < NewIS->getUses().size()) {
759 RS = &NewIS->getUses()[Idx++];
760 } else {
761 NewIS->getUses().emplace_back(RD, RegID);
762 RS = &NewIS->getUses().back();
763 ++Idx;
764 }
765
766 if (IsDepBreaking) {
767
768
769 if (Mask.isZero()) {
771 RS->setIndependentFromDef();
772 } else {
773
774
775
776
777
778 if (Mask.getBitWidth() > RD.UseIndex) {
779
781 RS->setIndependentFromDef();
782 }
783 }
784 }
785 }
786 if (IsInstRecycled && Idx < NewIS->getUses().size())
787 NewIS->getUses().pop_back_n(NewIS->getUses().size() - Idx);
788
789
790 if (D.Writes.empty()) {
791 if (IsInstRecycled)
793 else
794 return std::move(CreatedIS);
795 }
796
797
798
799 APInt WriteMask(D.Writes.size(), 0);
800
801
802
803 if (MCIA)
804 MCIA->clearsSuperRegisters(MRI, MCI, WriteMask);
805
806
807 unsigned WriteIndex = 0;
808 Idx = 0U;
812
813
814 if ((WD.IsOptionalDef && !RegID) || MRI.isConstant(RegID)) {
815 ++WriteIndex;
816 continue;
817 }
818
819 assert(RegID && "Expected a valid register ID!");
820 if (IsInstRecycled && Idx < NewIS->getDefs().size()) {
821 NewIS->getDefs()[Idx++] =
823 WriteMask[WriteIndex],
824 IsZeroIdiom);
825 } else {
826 NewIS->getDefs().emplace_back(WD, RegID,
827 WriteMask[WriteIndex],
828 IsZeroIdiom);
829 ++Idx;
830 }
831 ++WriteIndex;
832 }
833 if (IsInstRecycled && Idx < NewIS->getDefs().size())
834 NewIS->getDefs().pop_back_n(NewIS->getDefs().size() - Idx);
835
836 if (IsInstRecycled)
838 else
839 return std::move(CreatedIS);
840}
841}
842}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file implements a class to represent arbitrary precision integral constant values and operations...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file defines the DenseMap class.
A builder class for instructions that are statically analyzed by llvm-mca.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Class for arbitrary precision integers.
uint64_t getZExtValue() const
Get zero extended value.
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Subclass of Error for the sole purpose of identifying the success path in the type system.
Lightweight error class with error context and mandatory checking.
Tagged union holding either a T or a Error.
Error takeError()
Take ownership of the stored error.
Instances of this class represent a single low-level machine instruction.
unsigned getNumOperands() const
unsigned getFlags() const
unsigned getOpcode() const
const MCOperand & getOperand(unsigned i) const
Describe properties that are true of each instruction in the target description file.
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
ArrayRef< MCOperandInfo > operands() const
bool mayStore() const
Return true if this instruction could possibly modify memory.
bool mayLoad() const
Return true if this instruction could possibly read memory.
bool hasOptionalDef() const
Set if this instruction has an optional definition, e.g.
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
bool variadicOpsAreDefs() const
Return true if variadic operands of this instruction are definitions.
ArrayRef< MCPhysReg > implicit_defs() const
Return a list of registers that are potentially written by any instance of this machine instruction.
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by other flags.
Interface to description of machine instruction set.
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Instances of this class represent operands of the MCInst class.
MCRegister getReg() const
Returns the register number.
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
constexpr unsigned id() const
Generic base class for all target subtargets.
virtual unsigned resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) const
Resolve a variant scheduling class for the given MCInst and CPU.
const MCWriteProcResEntry * getWriteProcResBegin(const MCSchedClassDesc *SC) const
Return an iterator at the first process resource consumed by the given scheduling class.
const MCSchedModel & getSchedModel() const
Get the machine model for this subtarget's CPU.
reference emplace_back(ArgTypes &&... Args)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
static LLVM_ABI raw_ostream & warning()
Convenience method for printing "warning: " to stderr.
static LLVM_ABI raw_ostream & note()
Convenience method for printing "note: " to stderr.
An opaque object representing a hash code.
LLVM_ABI Expected< std::unique_ptr< Instruction > > createInstruction(const MCInst &MCI, const SmallVector< Instrument * > &IVec)
Definition InstrBuilder.cpp:683
void setEndGroup(bool newVal)
void setRetireOOO(bool newVal)
SmallVectorImpl< WriteState > & getDefs()
void setBeginGroup(bool newVal)
SmallVectorImpl< ReadState > & getUses()
void setHasSideEffects(bool newVal)
void setMayStore(bool newVal)
void setOptimizableMove()
void setMayLoad(bool newVal)
An instruction propagated through the simulated instruction pipeline.
This class allows targets to optionally customize the logic that resolves scheduling class IDs.
Tracks register operand latency in cycles.
Tracks uses of a register definition (e.g.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
This namespace contains all of the command line option processing machinery.
static void computeMaxLatency(InstrDesc &ID, const MCSchedClassDesc &SCDesc, const MCSubtargetInfo &STI, unsigned CallLatency, bool IsCall)
Definition InstrBuilder.cpp:223
char InstructionError< T >::ID
hash_code hashMCInst(const MCInst &MCI)
Definition InstrBuilder.cpp:517
static void initializeUsedResources(InstrDesc &ID, const MCSchedClassDesc &SCDesc, const MCSubtargetInfo &STI, ArrayRef< uint64_t > ProcResourceMasks)
Definition InstrBuilder.cpp:43
hash_code hashMCOperand(const MCOperand &MCO)
Definition InstrBuilder.cpp:508
LLVM_ABI void computeProcResourceMasks(const MCSchedModel &SM, MutableArrayRef< uint64_t > Masks)
Populates vector Masks with processor resource masks.
unsigned getResourceStateIndex(uint64_t Mask)
static Error verifyOperands(const MCInstrDesc &MCDesc, const MCInst &MCI)
Definition InstrBuilder.cpp:239
This is an optimization pass for GlobalISel generic memory operations.
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
void sort(IteratorTy Start, IteratorTy End)
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
Error make_error(ArgTs &&... Args)
Make a Error instance representing failure using the given error info type.
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
DWARFExpression::Operation Op
hash_code hash_combine(const Ts &...args)
Combine values into a single hash_code.
@ TypeHash
Token ID based on allocated type hash.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
Define a kind of processor resource that will be modeled by the scheduler.
Summarize the scheduling resources required for an instruction of a particular scheduling class.
static const unsigned short InvalidNumMicroOps
uint16_t NumWriteLatencyEntries
uint16_t NumWriteProcResEntries
Machine model for scheduling, bundling, and heuristics.
const MCSchedClassDesc * getSchedClassDesc(unsigned SchedClassIdx) const
unsigned getProcessorID() const
unsigned getNumProcResourceKinds() const
static LLVM_ABI int computeInstrLatency(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Returns the latency value for the scheduling class.
const MCProcResourceDesc * getProcResource(unsigned ProcResourceIdx) const
StringRef getSchedClassName(unsigned SchedClassIdx) const
Identify one of the processor resource kinds consumed by a particular scheduling class for the specif...
uint16_t ReleaseAtCycle
Cycle at which the resource will be released by an instruction, relatively to the cycle in which the ...
An instruction descriptor.
A register read descriptor.
bool isImplicitRead() const
Helper used by class InstrDesc to describe how hardware resources are used.
A register write descriptor.
bool isImplicitWrite() const