LLVM: lib/Transforms/Scalar/LoopPredication.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
203#include
204
205#define DEBUG_TYPE "loop-predication"
206
207STATISTIC(TotalConsidered, "Number of guards considered");
208STATISTIC(TotalWidened, "Number of checks widened");
209
210using namespace llvm;
211
214
217
221
222
223
224
225
227 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
228 cl::desc("scale factor for the latch probability. Value should be greater "
229 "than 1. Lower values are ignored"));
230
232 "loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden,
233 cl::desc("Whether or not we should predicate guards "
234 "expressed as widenable branches to deoptimize blocks"),
236
238 "loop-predication-insert-assumes-of-predicated-guards-conditions",
240 cl::desc("Whether or not we should insert assumes of conditions of "
241 "predicated guards"),
243
244namespace {
245
246
247struct LoopICmp {
250 const SCEV *Limit;
252 const SCEV *Limit)
253 : Pred(Pred), IV(IV), Limit(Limit) {}
254 LoopICmp() = default;
255 void dump() {
256 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
257 << ", Limit = " << *Limit << "\n";
258 }
259};
260
261class LoopPredication {
263 DominatorTree *DT;
264 ScalarEvolution *SE;
265 LoopInfo *LI;
266 MemorySSAUpdater *MSSAU;
267
268 Loop *L;
269 const DataLayout *DL;
271 LoopICmp LatchCheck;
272
273 bool isSupportedStep(const SCEV* Step);
274 std::optional parseLoopICmp(ICmpInst *ICI);
275 std::optional parseLoopLatchICmp();
276
277
278
279
280
282
283
284
285
286 Instruction *findInsertPt(const SCEVExpander &Expander, Instruction *User,
288
289
290
291
292 bool isLoopInvariantValue(const SCEV* S);
293
294 Value *expandCheck(SCEVExpander &Expander, Instruction *Guard,
295 ICmpInst::Predicate Pred, const SCEV *LHS,
296 const SCEV *RHS);
297
298 std::optional<Value *> widenICmpRangeCheck(ICmpInst *ICI,
299 SCEVExpander &Expander,
300 Instruction *Guard);
301 std::optional<Value *>
302 widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
303 SCEVExpander &Expander,
304 Instruction *Guard);
305 std::optional<Value *>
306 widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck, LoopICmp RangeCheck,
307 SCEVExpander &Expander,
308 Instruction *Guard);
309 void widenChecks(SmallVectorImpl<Value *> &Checks,
310 SmallVectorImpl<Value *> &WidenedChecks,
311 SCEVExpander &Expander, Instruction *Guard);
312 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
313 bool widenWidenableBranchGuardConditions(BranchInst *Guard, SCEVExpander &Expander);
314
315
316
317
318 bool isLoopProfitableToPredicate();
319
320 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
321
322public:
324 LoopInfo *LI, MemorySSAUpdater *MSSAU)
325 : AA(AA), DT(DT), SE(SE), LI(LI), MSSAU(MSSAU){};
326 bool runOnLoop(Loop *L);
327};
328
329}
330
334 std::unique_ptr MSSAU;
336 MSSAU = std::make_unique(AR.MSSA);
337 LoopPredication LP(&AR.AA, &AR.DT, &AR.SE, &AR.LI,
338 MSSAU ? MSSAU.get() : nullptr);
339 if (!LP.runOnLoop(&L))
341
345 return PA;
346}
347
348std::optional LoopPredication::parseLoopICmp(ICmpInst *ICI) {
352
353 const SCEV *LHSS = SE->getSCEV(LHS);
355 return std::nullopt;
356 const SCEV *RHSS = SE->getSCEV(RHS);
358 return std::nullopt;
359
360
361 if (SE->isLoopInvariant(LHSS, L)) {
365 }
366
368 if (!AR || AR->getLoop() != L)
369 return std::nullopt;
370
371 return LoopICmp(Pred, AR, RHSS);
372}
373
379 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
380
381 if (SE->isLoopInvariant(LHS, L) && SE->isLoopInvariant(RHS, L)) {
383 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
384 return Builder.getTrue();
387 return Builder.getFalse();
388 }
389
394 IRBuilder<> Builder(findInsertPt(Guard, {LHSV, RHSV}));
395 return Builder.CreateICmp(Pred, LHSV, RHSV);
396}
397
398
399
400
401
402
403
404
405
406
407
408
409
410
413 const LoopICmp LatchCheck,
414 Type *RangeCheckType) {
416 return false;
417 assert(DL.getTypeSizeInBits(LatchCheck.IV->getType()).getFixedValue() >
418 DL.getTypeSizeInBits(RangeCheckType).getFixedValue() &&
419 "Expected latch check IV type to be larger than range check operand "
420 "type!");
421
422
425 if (!Limit || !Start)
426 return false;
427
428
429
430
431
433 return false;
434
435
436
437 auto RangeCheckTypeBitSize =
438 DL.getTypeSizeInBits(RangeCheckType).getFixedValue();
439 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
440 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
441}
442
443
444
445
448 const LoopICmp LatchCheck,
449 Type *RangeCheckType) {
450
451 auto *LatchType = LatchCheck.IV->getType();
452 if (RangeCheckType == LatchType)
453 return LatchCheck;
454
455 if (DL.getTypeSizeInBits(LatchType).getFixedValue() <
456 DL.getTypeSizeInBits(RangeCheckType).getFixedValue())
457 return std::nullopt;
459 return std::nullopt;
460
461
462 LoopICmp NewLatchCheck;
463 NewLatchCheck.Pred = LatchCheck.Pred;
466 if (!NewLatchCheck.IV)
467 return std::nullopt;
468 NewLatchCheck.Limit = SE.getTruncateExpr(LatchCheck.Limit, RangeCheckType);
470 << "can be represented as range check type:"
471 << *RangeCheckType << "\n");
472 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
473 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
474 return NewLatchCheck;
475}
476
477bool LoopPredication::isSupportedStep(const SCEV* Step) {
479}
480
484 if (->isLoopInvariant(Op))
485 return Use;
486 return Preheader->getTerminator();
487}
488
492
493
494
496 if (!SE->isLoopInvariant(Op, L) ||
498 return Use;
499 return Preheader->getTerminator();
500}
501
502bool LoopPredication::isLoopInvariantValue(const SCEV* S) {
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522 if (SE->isLoopInvariant(S, L))
523
524
525 return true;
526
527
528
529
532 if (LI->isUnordered() && L->hasLoopInvariantOperands(LI))
533 if ((AA->getModRefInfoMask(LI->getOperand(0))) ||
534 LI->hasMetadata(LLVMContext::MD_invariant_load))
535 return true;
536 return false;
537}
538
539std::optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
540 LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
542 auto *Ty = RangeCheck.IV->getType();
543
544
545
546
547
548
549 const SCEV *GuardStart = RangeCheck.IV->getStart();
550 const SCEV *GuardLimit = RangeCheck.Limit;
551 const SCEV *LatchStart = LatchCheck.IV->getStart();
552 const SCEV *LatchLimit = LatchCheck.Limit;
553
554
555
556 if (!isLoopInvariantValue(GuardStart) ||
557 !isLoopInvariantValue(GuardLimit) ||
558 !isLoopInvariantValue(LatchStart) ||
559 !isLoopInvariantValue(LatchLimit)) {
561 return std::nullopt;
562 }
566 return std::nullopt;
567 }
568
569
571 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
572 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
573 auto LimitCheckPred =
575
576 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
578 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
579
580 auto *LimitCheck =
581 expandCheck(Expander, Guard, LimitCheckPred, LatchLimit, RHS);
582 auto *FirstIterationCheck = expandCheck(Expander, Guard, RangeCheck.Pred,
583 GuardStart, GuardLimit);
584 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
586 Builder.CreateAnd(FirstIterationCheck, LimitCheck));
587}
588
589std::optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
590 LoopICmp LatchCheck, LoopICmp RangeCheck, SCEVExpander &Expander,
592 auto *Ty = RangeCheck.IV->getType();
593 const SCEV *GuardStart = RangeCheck.IV->getStart();
594 const SCEV *GuardLimit = RangeCheck.Limit;
595 const SCEV *LatchStart = LatchCheck.IV->getStart();
596 const SCEV *LatchLimit = LatchCheck.Limit;
597
598
599
600 if (!isLoopInvariantValue(GuardStart) ||
601 !isLoopInvariantValue(GuardLimit) ||
602 !isLoopInvariantValue(LatchStart) ||
603 !isLoopInvariantValue(LatchLimit)) {
605 return std::nullopt;
606 }
610 return std::nullopt;
611 }
612
613
614 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
615 if (RangeCheck.IV != PostDecLatchCheckIV) {
616 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
617 << *PostDecLatchCheckIV
618 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
619 return std::nullopt;
620 }
621
622
623
624
625
626 auto LimitCheckPred =
628 auto *FirstIterationCheck = expandCheck(Expander, Guard,
630 GuardStart, GuardLimit);
631 auto *LimitCheck = expandCheck(Expander, Guard, LimitCheckPred, LatchLimit,
632 SE->getOne(Ty));
633 IRBuilder<> Builder(findInsertPt(Guard, {FirstIterationCheck, LimitCheck}));
635 Builder.CreateAnd(FirstIterationCheck, LimitCheck));
636}
637
639 LoopICmp& RC) {
640
641
647}
648
649
650
651
652std::optional<Value *>
655 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
657
658
659
660
661
662 auto RangeCheck = parseLoopICmp(ICI);
663 if (!RangeCheck) {
664 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
665 return std::nullopt;
666 }
670 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
671 << RangeCheck->Pred << ")!\n");
672 return std::nullopt;
673 }
674 auto *RangeCheckIV = RangeCheck->IV;
675 if (!RangeCheckIV->isAffine()) {
676 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
677 return std::nullopt;
678 }
679 const SCEV *Step = RangeCheckIV->getStepRecurrence(*SE);
680
681
682 if (!isSupportedStep(Step)) {
683 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
684 return std::nullopt;
685 }
686 auto *Ty = RangeCheckIV->getType();
688 if (!CurrLatchCheckOpt) {
689 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
690 "corresponding to range type: "
691 << *Ty << "\n");
692 return std::nullopt;
693 }
694
695 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
696
697
700 "Range and latch steps should be of same type!");
702 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
703 return std::nullopt;
704 }
705
706 if (Step->isOne())
707 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
708 Expander, Guard);
709 else {
711 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
712 Expander, Guard);
713 }
714}
715
719 for (auto &Check : Checks)
721 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Guard)) {
723 Check = *NewRangeCheck;
724 }
725}
726
727bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
731
732 TotalConsidered++;
736 widenChecks(Checks, WidenedChecks, Expander, Guard);
737 if (WidenedChecks.empty())
738 return false;
739
740 TotalWidened += WidenedChecks.size();
741
742
743 IRBuilder<> Builder(findInsertPt(Guard, Checks));
744 Value *AllChecks = Builder.CreateAnd(Checks);
745 auto *OldCond = Guard->getOperand(0);
749 Builder.CreateAssumption(OldCond);
750 }
752
753 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n");
754 return true;
755}
756
757bool LoopPredication::widenWidenableBranchGuardConditions(
762
763 TotalConsidered++;
767
768
771 widenChecks(Checks, WidenedChecks, Expander, BI);
772 if (WidenedChecks.empty())
773 return false;
774
775 TotalWidened += WidenedChecks.size();
776
777
778 IRBuilder<> Builder(findInsertPt(BI, Checks));
779 Value *AllChecks = Builder.CreateAnd(Checks);
785
786
787
788 Value *AssumeCond = Builder.CreateAnd(WidenedChecks);
791 auto *PN = Builder.CreatePHI(AssumeCond->getType(), pred_size(IfTrueBB),
792 "assume.cond");
794 PN->addIncoming(Pred == GuardBB ? AssumeCond : Builder.getTrue(), Pred);
795 AssumeCond = PN;
796 }
797 Builder.CreateAssumption(AssumeCond);
798 }
801 "Stopped being a guard after transform?");
802
803 LLVM_DEBUG(dbgs() << "Widened checks = " << WidenedChecks.size() << "\n");
804 return true;
805}
806
807std::optional LoopPredication::parseLoopLatchICmp() {
809
810 BasicBlock *LoopLatch = L->getLoopLatch();
811 if (!LoopLatch) {
812 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
813 return std::nullopt;
814 }
815
818 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
819 return std::nullopt;
820 }
823 (TrueDest == L->getHeader() || BI->getSuccessor(1) == L->getHeader()) &&
824 "One of the latch's destinations must be the header");
825
827 if (!ICI) {
828 LLVM_DEBUG(dbgs() << "Failed to match the latch condition!\n");
829 return std::nullopt;
830 }
831 auto Result = parseLoopICmp(ICI);
832 if (!Result) {
833 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
834 return std::nullopt;
835 }
836
837 if (TrueDest != L->getHeader())
839
840
841
842 if (->IV->isAffine()) {
843 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
844 return std::nullopt;
845 }
846
847 const SCEV *Step = Result->IV->getStepRecurrence(*SE);
848 if (!isSupportedStep(Step)) {
849 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
850 return std::nullopt;
851 }
852
854 if (Step->isOne()) {
857 } else {
861 }
862 };
863
865 if (IsUnsupportedPredicate(Step, Result->Pred)) {
867 << ")!\n");
868 return std::nullopt;
869 }
870
872}
873
874bool LoopPredication::isLoopProfitableToPredicate() {
876 return true;
877
879 L->getExitEdges(ExitEdges);
880
881
882 if (ExitEdges.size() == 1)
883 return true;
884
885
886
887
888
889
890 auto *LatchBlock = L->getLoopLatch();
891 assert(LatchBlock && "Should have a single latch at this point!");
892 auto *LatchTerm = LatchBlock->getTerminator();
893 assert(LatchTerm->getNumSuccessors() == 2 &&
894 "expected to be an exiting block with 2 succs!");
895 unsigned LatchBrExitIdx =
896 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
897
898
899
900
901
902
903
904 auto *LatchExitBlock = LatchTerm->getSuccessor(LatchBrExitIdx);
906 LatchExitBlock->getTerminatingDeoptimizeCall())
907 return false;
908
909
910
912 return true;
913
914 auto ComputeBranchProbability =
918 unsigned NumSucc = Term->getNumSuccessors();
922 uint64_t Numerator = 0, Denominator = 0;
924 if (Term->getSuccessor(i) == ExitBlock)
925 Numerator += Weight;
926 Denominator += Weight;
927 }
928
929 if (Denominator == 0)
932 } else {
933 assert(LatchBlock != ExitingBlock &&
934 "Latch term should always have profile data!");
935
937 }
938 };
939
941 ComputeBranchProbability(LatchBlock, LatchExitBlock);
942
943
944
946 if (ScaleFactor < 1) {
949 << "Ignored user setting for loop-predication-latch-probability-scale: "
952 ScaleFactor = 1.0;
953 }
954 const auto LatchProbabilityThreshold = LatchExitProbability * ScaleFactor;
955
956 for (const auto &ExitEdge : ExitEdges) {
958 ComputeBranchProbability(ExitEdge.first, ExitEdge.second);
959
960
961 if (ExitingBlockProbability > LatchProbabilityThreshold)
962 return false;
963 }
964
965
966
967
968 return true;
969}
970
971
972
974
975
976
977
978
979
980 BasicBlock *BB = L->getLoopPreheader();
981 if (!BB)
982 return nullptr;
983 do {
986 BB = Pred;
987 continue;
988 }
989 break;
990 } while (true);
991
995 return BI;
996 }
997 return nullptr;
998}
999
1000
1001
1002
1007 L->getExitingBlocks(ExitingBlocks);
1008
1010 for (BasicBlock *ExitingBB : ExitingBlocks) {
1013 continue;
1015 "We should only have known counts for exiting blocks that "
1016 "dominate latch!");
1017 ExitCounts.push_back(ExitCount);
1018 }
1019 if (ExitCounts.size() < 2)
1022}
1023
1024
1025
1026
1027
1028
1029
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1050 L->getExitingBlocks(ExitingBlocks);
1051
1052 if (ExitingBlocks.empty())
1053 return false;
1054
1055 auto *Latch = L->getLoopLatch();
1056 if (!Latch)
1057 return false;
1058
1060 if (!WidenableBR)
1061 return false;
1062
1063 const SCEV *LatchEC = SE->getExitCount(L, Latch);
1065 return false;
1066
1067
1068
1069
1070
1071
1072
1073 bool ChangedLoop = false;
1074
1075 for (auto *ExitingBB : ExitingBlocks) {
1076 if (LI->getLoopFor(ExitingBB) != L)
1077 continue;
1078
1080 if (!BI)
1081 continue;
1082
1085 assert(WC->hasOneUse() && "Not appropriate widenable branch!");
1086 WC->user_back()->replaceUsesOfWith(
1088 ChangedLoop = true;
1089 }
1090 }
1091 if (ChangedLoop)
1092 SE->forgetLoop(L);
1093
1094
1095
1096
1098
1099
1100
1101
1102
1103
1104
1107 !SE->isLoopInvariant(MinEC, L) ||
1108 .isSafeToExpandAt(MinEC, IP))
1109 return ChangedLoop;
1110
1111 Rewriter.setInsertPoint(IP);
1113
1114 bool InvalidateLoop = false;
1115 Value *MinECV = nullptr;
1116 for (BasicBlock *ExitingBB : ExitingBlocks) {
1117
1118
1119
1120 if (LI->getLoopFor(ExitingBB) != L)
1121 continue;
1122
1123
1125 if (!BI)
1126 continue;
1127
1128
1130 continue;
1131
1132 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1135 .isSafeToExpandAt(ExitCount, WidenableBR))
1136 continue;
1137
1138 const bool ExitIfTrue = ->contains(*succ_begin(ExitingBB));
1141 continue;
1142
1143
1144
1145
1146
1147
1148
1149
1150
1152 if (!MinECV)
1153 MinECV = Rewriter.expandCodeFor(MinEC);
1157 ECV = B.CreateZExt(ECV, WiderTy);
1158 RHS = B.CreateZExt(RHS, WiderTy);
1159 }
1160 assert(!Latch || DT->dominates(ExitingBB, Latch));
1162
1163
1164
1165 NewCond = B.CreateFreeze(NewCond);
1166
1168
1171 InvalidateLoop = true;
1172 }
1173
1174 if (InvalidateLoop)
1175
1176
1177
1178
1179 SE->forgetLoop(L);
1180
1181
1182 return true;
1183}
1184
1185bool LoopPredication::runOnLoop(Loop *Loop) {
1187
1190
1191 Module *M = L->getHeader()->getModule();
1192
1193
1194 auto *GuardDecl =
1196 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
1198 M, Intrinsic::experimental_widenable_condition);
1199 bool HasWidenableConditions =
1201 if (!HasIntrinsicGuards && !HasWidenableConditions)
1202 return false;
1203
1204 DL = &M->getDataLayout();
1205
1206 Preheader = L->getLoopPreheader();
1207 if (!Preheader)
1208 return false;
1209
1210 auto LatchCheckOpt = parseLoopLatchICmp();
1211 if (!LatchCheckOpt)
1212 return false;
1213 LatchCheck = *LatchCheckOpt;
1214
1217
1218 if (!isLoopProfitableToPredicate()) {
1219 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
1220 return false;
1221 }
1222
1223
1226 for (const auto BB : L->blocks()) {
1227 for (auto &I : *BB)
1232 GuardsAsWidenableBranches.push_back(
1234 }
1235
1236 SCEVExpander Expander(*SE, *DL, "loop-predication");
1238 for (auto *Guard : Guards)
1239 Changed |= widenGuardConditions(Guard, Expander);
1240 for (auto *Guard : GuardsAsWidenableBranches)
1241 Changed |= widenWidenableBranchGuardConditions(Guard, Expander);
1242 Changed |= predicateLoopExits(L, Expander);
1243
1245 MSSAU->getMemorySSA()->verifyMemorySSA();
1247}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Module.h This file contains the declarations for the Module class.
static cl::opt< bool > LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), cl::desc("Predicate conditions in read only loops"))
static cl::opt< bool > SkipProfitabilityChecks("irce-skip-profitability-checks", cl::Hidden, cl::init(false))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static cl::opt< float > LatchExitProbabilityScale("loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0), cl::desc("scale factor for the latch probability. Value should be greater " "than 1. Lower values are ignored"))
static void normalizePredicate(ScalarEvolution *SE, Loop *L, LoopICmp &RC)
Definition LoopPredication.cpp:638
static cl::opt< bool > SkipProfitabilityChecks("loop-predication-skip-profitability-checks", cl::Hidden, cl::init(false))
static const SCEV * getMinAnalyzeableBackedgeTakenCount(ScalarEvolution &SE, DominatorTree &DT, Loop *L)
Return the minimum of all analyzeable exit counts.
Definition LoopPredication.cpp:1003
static cl::opt< bool > EnableCountDownLoop("loop-predication-enable-count-down-loop", cl::Hidden, cl::init(true))
static cl::opt< bool > EnableIVTruncation("loop-predication-enable-iv-truncation", cl::Hidden, cl::init(true))
static std::optional< LoopICmp > generateLoopLatchCheck(const DataLayout &DL, ScalarEvolution &SE, const LoopICmp LatchCheck, Type *RangeCheckType)
Definition LoopPredication.cpp:446
static cl::opt< bool > PredicateWidenableBranchGuards("loop-predication-predicate-widenable-branches-to-deopt", cl::Hidden, cl::desc("Whether or not we should predicate guards " "expressed as widenable branches to deoptimize blocks"), cl::init(true))
static bool isSafeToTruncateWideIVType(const DataLayout &DL, ScalarEvolution &SE, const LoopICmp LatchCheck, Type *RangeCheckType)
Definition LoopPredication.cpp:411
static cl::opt< bool > InsertAssumesOfPredicatedGuardsConditions("loop-predication-insert-assumes-of-predicated-guards-conditions", cl::Hidden, cl::desc("Whether or not we should insert assumes of conditions of " "predicated guards"), cl::init(true))
static BranchInst * FindWidenableTerminatorAboveLoop(Loop *L, LoopInfo &LI)
If we can (cheaply) find a widenable branch which controls entry into the loop, return it.
Definition LoopPredication.cpp:973
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
uint64_t IntrinsicInst * II
This file contains the declarations for profiling metadata utility functions.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Virtual Register Rewriter
static const uint32_t IV[8]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
LLVM_ABI const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
LLVM_ABI const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
LLVM_ABI const BasicBlock * getUniquePredecessor() const
Return the predecessor of this block if it has a unique predecessor block.
LLVM_ABI const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI const CallInst * getPostdominatingDeoptimizeCall() const
Returns the call instruction calling @llvm.experimental.deoptimize that is present either in current ...
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
void setCondition(Value *V)
bool isConditional() const
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ ICMP_UGE
unsigned greater or equal
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
@ ICMP_ULE
unsigned less or equal
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Predicate getPredicate() const
Return the predicate for this instruction.
Predicate getFlippedStrictnessPredicate() const
For predicate of kind "is X or equal to 0" returns the predicate "is X".
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
This instruction compares its operands according to the predicate given to the constructor.
static bool isEquality(Predicate P)
Return true if this predicate is either EQ or NE.
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name="")
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A wrapper class for inspecting calls to intrinsic functions.
This class provides an interface for updating the loop pass manager based on mutations to the loop ne...
PreservedAnalyses run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR, LPMUpdater &U)
Definition LoopPredication.cpp:331
Represents a single loop in the control flow graph.
An analysis that produces MemorySSA for a function.
A Module instance is used to store all the information related to an LLVM module.
A set of analyses that are preserved following a run of a transformation pass.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
This node represents a polynomial recurrence on the trip count of the specified loop.
const SCEV * getStart() const
const SCEV * getStepRecurrence(ScalarEvolution &SE) const
Constructs and returns the recurrence indicating how much this expression steps by.
LLVM_ABI const SCEVAddRecExpr * getPostIncExpr(ScalarEvolution &SE) const
Return an expression representing the value of this expression one iteration of the loop ahead.
const Loop * getLoop() const
This class uses information about analyze scalars to rewrite expressions in canonical form.
LLVM_ABI bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint) const
Return true if the given expression is safe to expand in the sense that all materialized values are d...
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
This means that we are dealing with an entirely unknown SCEV value, and only represent it as its LLVM...
This class represents an analyzed expression in the program.
LLVM_ABI bool isOne() const
Return true if the expression is a constant one.
LLVM_ABI bool isAllOnesValue() const
Return true if the expression is a constant all-ones value.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI const SCEV * getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth=0)
LLVM_ABI const SCEV * getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS, bool Sequential=false)
Promote the operands to the wider of the types using zero-extension, and then perform a umin operatio...
LLVM_ABI std::optional< MonotonicPredicateType > getMonotonicPredicateType(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred)
If, for all loop invariant X, the predicate "LHS `Pred` X" is monotonically increasing or decreasing,...
LLVM_ABI const SCEV * getCouldNotCompute()
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI bool isKnownPredicate(CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test if the given expression is known to satisfy the condition described by Pred, LHS,...
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isPointerTy() const
True if this is an instance of PointerType.
A Use represents the edge between a Value definition and its users.
void setOperand(unsigned i, Value *Val)
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
LLVM_ABI void dump() const
Support for debugging, callable in GDB: V->dump()
const ParentTy * getParent() const
Abstract Attribute helper functions.
@ BasicBlock
Various leaf nodes.
LLVM_ABI Function * getDeclarationIfExists(const Module *M, ID id)
Look up the Function declaration of the intrinsic id in the Module M and return it if it exists.
initializer< Ty > init(const Ty &Val)
friend class Instruction
Iterator for Instructions in a `BasicBlock.
This is an optimization pass for GlobalISel generic memory operations.
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
FunctionAddr VTableAddr Value
LLVM_ABI bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
void widenWidenableBranch(BranchInst *WidenableBR, Value *NewCond)
Given a branch we know is widenable (defined per Analysis/GuardUtils.h), widen it such that condition...
Value * extractWidenableCondition(const User *U)
auto pred_size(const MachineBasicBlock *BB)
void parseWidenableGuard(const User *U, llvm::SmallVectorImpl< Value * > &Checks)
AnalysisManager< Loop, LoopStandardAnalysisResults & > LoopAnalysisManager
The loop analysis manager.
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
LLVM_ABI MDNode * getValidBranchWeightMDNode(const Instruction &I)
Get the valid branch weights metadata node.
bool isModSet(const ModRefInfo MRI)
LLVM_ABI bool hasValidBranchWeightMD(const Instruction &I)
Checks if an instructions has valid Branch Weight Metadata.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
bool isWidenableBranch(const User *U)
Returns true iff U is a widenable branch (that is, extractWidenableCondition returns widenable condit...
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
bool isGuardAsWidenableBranch(const User *U)
Returns true iff U has semantics of a guard expressed in a form of a widenable conditional branch to ...
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
LLVM_ABI PreservedAnalyses getLoopPassPreservedAnalyses()
Returns the minimum set of Analyses that all loop passes must preserve.
auto predecessors(const MachineBasicBlock *BB)
AAResults AliasAnalysis
Temporary typedef for legacy code that uses a generic AliasAnalysis pointer or reference.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
The adaptor from a function pass to a loop pass computes these analyses and makes them available to t...