LLVM: lib/Transforms/Utils/LoopUtils.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
49
50using namespace llvm;
52
53#define DEBUG_TYPE "loop-utils"
54
57
60 bool PreserveLCSSA) {
62
63
65
66 auto RewriteExit = [&](BasicBlock *BB) {
68 "Must start with an empty predecessors list!");
70
71
72
73 bool IsDedicatedExit = true;
75 if (L->contains(PredBB)) {
77
78 return false;
79
80 InLoopPredecessors.push_back(PredBB);
81 } else {
82 IsDedicatedExit = false;
83 }
84
85 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
86
87
88 if (IsDedicatedExit)
89 return false;
90
92 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
93
94 if (!NewExitBB)
96 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
97 << *L << "\n");
98 else
99 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
100 << NewExitBB->getName() << "\n");
101 return true;
102 };
103
104
105
107 for (auto *BB : L->blocks())
108 for (auto *SuccBB : successors(BB)) {
109
110 if (L->contains(SuccBB))
111 continue;
112
113
114 if (!Visited.insert(SuccBB).second)
115 continue;
116
117 Changed |= RewriteExit(SuccBB);
118 }
119
121}
122
123
126
127 for (auto *Block : L->getBlocks())
128
129
130 for (auto &Inst : *Block) {
131 auto Users = Inst.users();
134 return !L->contains(Use->getParent());
135 }))
137 }
138
139 return UsedOutside;
140}
141
143
144
145
150
151
152
159
160
163
164
165
166
167
168
169
170
178
179
180}
181
182
183
184
185
186
187
188
189
202
203
211
212
213
214
216 unsigned V) {
218
220 if (LoopID) {
221 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
223
224 if (Node->getNumOperands() == 2) {
226 if (S && S->getString() == StringMD) {
230
231 return;
232
233
234 continue;
235 }
236 }
238 }
239 }
240
242
245
248}
249
250std::optional
252 std::optional Width =
254
255 if (Width) {
257 TheLoop, "llvm.loop.vectorize.scalable.enable");
259 }
260
261 return std::nullopt;
262}
263
266 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
267 if (!OrigLoopID) {
268 if (AlwaysNew)
269 return nullptr;
270 return std::nullopt;
271 }
272
274
275 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
276 bool InheritSomeAttrs =
277 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
280
282 if (InheritAllAttrs || InheritSomeAttrs) {
285
286 auto InheritThisAttribute = [InheritSomeAttrs,
287 InheritOptionsExceptPrefix](MDNode *Op) {
288 if (!InheritSomeAttrs)
289 return false;
290
291
292 if (Op->getNumOperands() == 0)
293 return true;
294 Metadata *NameMD = Op->getOperand(0).get();
296 return true;
298
299
300 return !AttrName.starts_with(InheritOptionsExceptPrefix);
301 };
302
303 if (InheritThisAttribute(Op))
305 else
307 }
308 } else {
309
311 }
312
313 bool HasAnyFollowup = false;
314 for (StringRef OptionName : FollowupOptions) {
316 if (!FollowupNode)
317 continue;
318
319 HasAnyFollowup = true;
323 }
324 }
325
326
327
328 if (!AlwaysNew && !HasAnyFollowup)
329 return std::nullopt;
330
331
332 if (!AlwaysNew && )
333 return OrigLoopID;
334
335
336 if (MDs.size() == 1)
337 return nullptr;
338
339
342 return FollowupLoopID;
343}
344
348
352
356
357 std::optional Count =
361
364
367
370
372}
373
377
378 std::optional Count =
382
385
388
390}
391
393 std::optional Enable =
395
398
399 std::optional VectorizeWidth =
401 std::optional InterleaveCount =
403
404
405
406 if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
407 InterleaveCount == 1)
409
412
415
416 if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
418
419 if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
421
424
426}
427
437
447
448
449
452 const Loop *CurLoop) {
454 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
455
458 Worklist.push_back(DTN->getBlock());
459 };
460
461 AddRegionToWorklist(N);
462
463 for (size_t I = 0; I < Worklist.size(); I++) {
465 AddRegionToWorklist(Child);
466 }
467
468 return Worklist;
469}
470
473 assert(LatchIdx != -1 && "LatchBlock is not a case in this PHINode");
475
477 if (U != Cond && U != IncV) return false;
478
480 if (U != Cond && U != PN) return false;
481 return true;
482}
483
484
487 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
488 auto *Preheader = L->getLoopPreheader();
489 assert(Preheader && "Preheader should exist!");
490
491 std::unique_ptr MSSAU;
492 if (MSSA)
493 MSSAU = std::make_unique(MSSA);
494
495
496
497
498
499
500
501
502
503
504 if (SE) {
507 }
508
509 Instruction *OldTerm = Preheader->getTerminator();
511 "Preheader must end with a side-effect-free terminator");
513 "Preheader must have a single successor");
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
540
541 auto *ExitBlock = L->getUniqueExitBlock();
542 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
543 if (ExitBlock) {
544 assert(ExitBlock && "Should have a unique exit block!");
545 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
546
547 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
548
550
551
552
553 for (PHINode &P : ExitBlock->phis()) {
554
555
556
557 int PredIndex = 0;
558 P.setIncomingBlock(PredIndex, Preheader);
559
560
561
562 P.removeIncomingValueIf([](unsigned Idx) { return Idx != 0; },
563 false);
564
565 assert((P.getNumIncomingValues() == 1 &&
566 P.getIncomingBlock(PredIndex) == Preheader) &&
567 "Should have exactly one value and that's from the preheader!");
568 }
569
570 if (DT) {
572 if (MSSA) {
574 *DT);
577 }
578 }
579
580
581 Builder.SetInsertPoint(Preheader->getTerminator());
582 Builder.CreateBr(ExitBlock);
583
584 Preheader->getTerminator()->eraseFromParent();
585 } else {
586 assert(L->hasNoExitBlocks() &&
587 "Loop should have either zero or one exit blocks.");
588
589 Builder.SetInsertPoint(OldTerm);
590 Builder.CreateUnreachable();
591 Preheader->getTerminator()->eraseFromParent();
592 }
593
594 if (DT) {
596 if (MSSA) {
598 *DT);
600 L->block_end());
601 MSSAU->removeBlocks(DeadBlockSet);
604 }
605 }
606
607
610
611 if (ExitBlock) {
612
613
614
615
616
617
618
619
620 for (auto *Block : L->blocks())
625 if (L->contains(Usr->getParent()))
626 continue;
627
628
629 if (DT)
631 "Unexpected user in reachable block");
633 }
634
635
636
637
641 DVR.getDebugLoc().get());
642 if (!DeadDebugSet.insert(Key).second)
643 continue;
644
645 DVR.removeFromParent();
646 DeadDbgVariableRecords.push_back(&DVR);
647 }
648 }
649
650
651
652
653
654
655
656 DIBuilder DIB(*ExitBlock->getModule());
658 ExitBlock->getFirstInsertionPt();
659 assert(InsertDbgValueBefore != ExitBlock->end() &&
660 "There should be a non-PHI instruction in exit block, else these "
661 "instructions will have no parent.");
662
663
664
665
666
668 ExitBlock->insertDbgRecordBefore(DVR, InsertDbgValueBefore);
669 }
670
671
672
673 for (auto *Block : L->blocks())
674 Block->dropAllReferences();
675
678
679 if (LI) {
680
681
682
683
685 BB->eraseFromParent();
686
687
688
689
693
694
695
696
697
698 if (Loop *ParentLoop = L->getParentLoop()) {
700 assert(I != ParentLoop->end() && "Couldn't find loop");
701 ParentLoop->removeChildLoop(I);
702 } else {
704 assert(I != LI->end() && "Couldn't find loop");
706 }
708 }
709}
710
713 auto *Latch = L->getLoopLatch();
714 assert(Latch && "multiple latches not yet supported");
715 auto *Header = L->getHeader();
716 Loop *OutermostLoop = L->getOutermostLoop();
717
720
721 std::unique_ptr MSSAU;
722 if (MSSA)
723 MSSAU = std::make_unique(MSSA);
724
725
726
727 [&]() -> void {
729 if (!BI->isConditional()) {
730 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
732 MSSAU.get());
733 return;
734 }
735
736
737
738 if (L->isLoopExiting(Latch)) {
739
740
741
742
743 const unsigned ExitIdx = L->contains(BI->getSuccessor(0)) ? 1 : 0;
744 BasicBlock *ExitBB = BI->getSuccessor(ExitIdx);
745
746 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
747 Header->removePredecessor(Latch, true);
748
750 auto *NewBI = Builder.CreateBr(ExitBB);
751
752
753 NewBI->copyMetadata(*BI, {LLVMContext::MD_dbg,
754 LLVMContext::MD_annotation});
755
756 BI->eraseFromParent();
758 if (MSSA)
760 return;
761 }
762 }
763
764
765
766
767 auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
768
769 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
771 true, &DTU, MSSAU.get());
772 }();
773
774
775
777
778
779
780
781
782
783 if (OutermostLoop != L)
785}
786
787
788
789
790
792 BasicBlock *Latch = L->getLoopLatch();
793 if (!Latch)
794 return nullptr;
795
797 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
798 return nullptr;
799
801 LatchBR->getSuccessor(1) == L->getHeader()) &&
802 "At least one edge out of the latch must go to the header");
803
804 return LatchBR;
805}
806
811
812#ifndef NDEBUG
814 OS << "function ";
815 D.L->getHeader()->getParent()->printAsOperand(OS, false);
816 return OS << " " << *D.L;
817}
818#endif
819
821
822
823
824
826 if (!ExitingBranch) {
827 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed to find exiting "
828 << "latch branch of required form in " << DbgLoop(L)
829 << "\n");
830 return std::nullopt;
831 }
832
833
834
835
836 uint64_t LoopWeight, ExitWeight;
838 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed to extract branch "
839 << "weights for " << DbgLoop(L) << "\n");
840 return std::nullopt;
841 }
842
843 if (L->contains(ExitingBranch->getSuccessor(1)))
844 std::swap(LoopWeight, ExitWeight);
845
846 if (!ExitWeight) {
847
848 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Failed because of zero exit "
849 << "probability for " << DbgLoop(L) << "\n");
850 return std::nullopt;
851 }
852
853
854
856
857
858 if (ExitCount >= std::numeric_limits::max())
859 return std::numeric_limits::max();
860
861
863 LLVM_DEBUG(dbgs() << "estimateLoopTripCount: Estimated trip count of " << TC
864 << " for " << DbgLoop(L) << "\n");
865 return TC;
866}
867
868std::optional
870 unsigned *EstimatedLoopInvocationWeight) {
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
894 if (!ExitingBranch)
895 return std::nullopt;
896
897
898
899
900
901
902
903 if (EstimatedLoopInvocationWeight) {
904 uint64_t LoopWeight = 0, ExitWeight = 0;
906 return std::nullopt;
907 if (L->contains(ExitingBranch->getSuccessor(1)))
908 std::swap(LoopWeight, ExitWeight);
909 if (!ExitWeight)
910 return std::nullopt;
911 *EstimatedLoopInvocationWeight = ExitWeight;
912 }
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
932 << "count of " << *TC
933 << (*TC == 0 ? " (returning std::nullopt)" : "")
934 << " for " << DbgLoop(L) << "\n");
935 return *TC == 0 ? std::nullopt : std::optional(*TC);
936 }
937
938
940}
941
943 Loop *L, unsigned EstimatedTripCount,
944 std::optional EstimatedloopInvocationWeight) {
945
946
947
948
949
951 if (!LatchBranch)
952 return false;
953
954
956
957
958
959
960
961
962
963
964 if (!EstimatedloopInvocationWeight)
965 return true;
966
967
968 unsigned LatchExitWeight = 0;
969 unsigned BackedgeTakenWeight = 0;
970
971 if (EstimatedTripCount != 0) {
972 LatchExitWeight = *EstimatedloopInvocationWeight;
973 BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
974 }
975
976
977 if (LatchBranch->getSuccessor(0) != L->getHeader())
978 std::swap(BackedgeTakenWeight, LatchExitWeight);
979
980
981 setBranchWeights(*LatchBranch, {BackedgeTakenWeight, LatchExitWeight},
982 false);
983
984 return true;
985}
986
989 if (!LatchBranch)
991 bool FirstTargetIsLoop = LatchBranch->getSuccessor(0) == L->getHeader();
993}
994
997 if (!LatchBranch)
998 return false;
999 bool FirstTargetIsLoop = LatchBranch->getSuccessor(0) == L->getHeader();
1001}
1002
1004 bool ForFirstTarget) {
1005 if (B->getNumSuccessors() != 2)
1010 uint64_t Denominator = Weight0 + Weight1;
1011 if (Denominator == 0)
1013 if (!ForFirstTarget)
1016}
1017
1019 bool ForFirstTarget) {
1020 if (B->getNumSuccessors() != 2)
1021 return false;
1024 if (!ForFirstTarget)
1027 false);
1028 return true;
1029}
1030
1034 if (!OuterL)
1035 return true;
1036
1037
1039 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
1042 return false;
1043
1044
1048 return false;
1049
1050 return true;
1051}
1052
1054 switch (RK) {
1055 default:
1060 return Intrinsic::vector_reduce_add;
1062 return Intrinsic::vector_reduce_mul;
1064 return Intrinsic::vector_reduce_and;
1066 return Intrinsic::vector_reduce_or;
1068 return Intrinsic::vector_reduce_xor;
1071 return Intrinsic::vector_reduce_fadd;
1073 return Intrinsic::vector_reduce_fmul;
1075 return Intrinsic::vector_reduce_smax;
1077 return Intrinsic::vector_reduce_smin;
1079 return Intrinsic::vector_reduce_umax;
1081 return Intrinsic::vector_reduce_umin;
1084 return Intrinsic::vector_reduce_fmax;
1087 return Intrinsic::vector_reduce_fmin;
1089 return Intrinsic::vector_reduce_fmaximum;
1091 return Intrinsic::vector_reduce_fminimum;
1093 return Intrinsic::vector_reduce_fmax;
1095 return Intrinsic::vector_reduce_fmin;
1096 }
1097}
1098
1100 switch (IID) {
1101 default:
1103 case Intrinsic::umin:
1104 return Intrinsic::vector_reduce_umin;
1105 case Intrinsic::umax:
1106 return Intrinsic::vector_reduce_umax;
1107 case Intrinsic::smin:
1108 return Intrinsic::vector_reduce_smin;
1109 case Intrinsic::smax:
1110 return Intrinsic::vector_reduce_smax;
1111 }
1112}
1113
1114
1116 switch (RdxID) {
1117 case Intrinsic::vector_reduce_fadd:
1118 return Instruction::FAdd;
1119 case Intrinsic::vector_reduce_fmul:
1120 return Instruction::FMul;
1121 case Intrinsic::vector_reduce_add:
1122 return Instruction::Add;
1123 case Intrinsic::vector_reduce_mul:
1124 return Instruction::Mul;
1125 case Intrinsic::vector_reduce_and:
1126 return Instruction::And;
1127 case Intrinsic::vector_reduce_or:
1128 return Instruction::Or;
1129 case Intrinsic::vector_reduce_xor:
1130 return Instruction::Xor;
1131 case Intrinsic::vector_reduce_smax:
1132 case Intrinsic::vector_reduce_smin:
1133 case Intrinsic::vector_reduce_umax:
1134 case Intrinsic::vector_reduce_umin:
1135 return Instruction::ICmp;
1136 case Intrinsic::vector_reduce_fmax:
1137 case Intrinsic::vector_reduce_fmin:
1138 return Instruction::FCmp;
1139 default:
1141 }
1142}
1143
1144
1146 switch (Opc) {
1147 default:
1148 break;
1149 case Instruction::Add:
1150 return Intrinsic::vector_reduce_add;
1151 case Instruction::Mul:
1152 return Intrinsic::vector_reduce_mul;
1153 case Instruction::And:
1154 return Intrinsic::vector_reduce_and;
1155 case Instruction::Or:
1156 return Intrinsic::vector_reduce_or;
1157 case Instruction::Xor:
1158 return Intrinsic::vector_reduce_xor;
1159 }
1161}
1162
1164 switch (RdxID) {
1165 default:
1167 case Intrinsic::vector_reduce_umin:
1168 return Intrinsic::umin;
1169 case Intrinsic::vector_reduce_umax:
1170 return Intrinsic::umax;
1171 case Intrinsic::vector_reduce_smin:
1172 return Intrinsic::smin;
1173 case Intrinsic::vector_reduce_smax:
1174 return Intrinsic::smax;
1175 case Intrinsic::vector_reduce_fmin:
1176 return Intrinsic::minnum;
1177 case Intrinsic::vector_reduce_fmax:
1178 return Intrinsic::maxnum;
1179 case Intrinsic::vector_reduce_fminimum:
1180 return Intrinsic::minimum;
1181 case Intrinsic::vector_reduce_fmaximum:
1182 return Intrinsic::maximum;
1183 }
1184}
1185
1187 switch (RK) {
1188 default:
1191 return Intrinsic::umin;
1193 return Intrinsic::umax;
1195 return Intrinsic::smin;
1197 return Intrinsic::smax;
1200 return Intrinsic::minnum;
1203 return Intrinsic::maxnum;
1205 return Intrinsic::minimum;
1207 return Intrinsic::maximum;
1209 return Intrinsic::minimumnum;
1211 return Intrinsic::maximumnum;
1212 }
1213}
1214
1216 switch (RdxID) {
1217 case Intrinsic::vector_reduce_smax:
1219 case Intrinsic::vector_reduce_smin:
1221 case Intrinsic::vector_reduce_umax:
1223 case Intrinsic::vector_reduce_umin:
1225 case Intrinsic::vector_reduce_fmax:
1227 case Intrinsic::vector_reduce_fmin:
1229 default:
1231 }
1232}
1233
1235 switch (RK) {
1236 default:
1250
1251
1252
1253 }
1254}
1255
1259 if (Ty->isIntOrIntVectorTy() ||
1264 return Builder.CreateIntrinsic(Ty, Id, {Left, Right}, nullptr,
1265 "rdx.minmax");
1266 }
1268 Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
1269 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1271}
1272
1273
1277
1278
1279
1280 Value *Result = Acc;
1281 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1283 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1284
1285 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1287 "bin.rdx");
1288 } else {
1290 "Invalid min/max");
1291 Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
1292 }
1293 }
1294
1295 return Result;
1296}
1297
1298
1300 unsigned Op,
1304
1305
1306
1308 "Reduction emission only supported for pow2 vectors!");
1309
1310
1311
1312
1313
1314
1315
1316 auto BuildShuffledOp = [&Builder, &Op,
1318 Value *&TmpVec) -> void {
1319 Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
1320 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1322 "bin.rdx");
1323 } else {
1325 "Invalid min/max");
1326 TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
1327 }
1328 };
1329
1330 Value *TmpVec = Src;
1333 for (unsigned stride = 1; stride < VF; stride <<= 1) {
1334
1336 for (unsigned j = 0; j < VF; j += stride << 1) {
1337 ShuffleMask[j] = j + stride;
1338 }
1339 BuildShuffledOp(ShuffleMask, TmpVec);
1340 }
1341 } else {
1343 for (unsigned i = VF; i != 1; i >>= 1) {
1344
1345 for (unsigned j = 0; j != i / 2; ++j)
1346 ShuffleMask[j] = i / 2 + j;
1347
1348
1349 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
1350 BuildShuffledOp(ShuffleMask, TmpVec);
1351 }
1352 }
1353
1354 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1355}
1356
1359 Value *NewVal = nullptr;
1360
1361
1362
1364 for (auto *U : OrigPhi->users()) {
1366 break;
1367 }
1368 assert(SI && "One user of the original phi should be a select");
1369
1370 if (SI->getTrueValue() == OrigPhi)
1371 NewVal = SI->getFalseValue();
1372 else {
1373 assert(SI->getFalseValue() == OrigPhi &&
1374 "At least one input to the select should be the original Phi");
1375 NewVal = SI->getTrueValue();
1376 }
1377
1378
1380 Src->getType()->isVectorTy() ? Builder.CreateOrReduce(Src) : Src;
1381
1382
1383 AnyOf = Builder.CreateFreeze(AnyOf);
1384 return Builder.CreateSelect(AnyOf, NewVal, InitVal, "rdx.select");
1385}
1386
1393 ? (IsMaxRdx ? Builder.CreateIntMaxReduce(Src, IsSigned)
1394 : Builder.CreateIntMinReduce(Src, IsSigned))
1395 : Src;
1396
1397
1400 return Builder.CreateSelect(Cmp, MaxRdx, Start, "rdx.select");
1401}
1402
1405 bool Negative = false;
1406 switch (RdxID) {
1407 default:
1409 case Intrinsic::vector_reduce_add:
1410 case Intrinsic::vector_reduce_mul:
1411 case Intrinsic::vector_reduce_or:
1412 case Intrinsic::vector_reduce_xor:
1413 case Intrinsic::vector_reduce_and:
1414 case Intrinsic::vector_reduce_fadd:
1415 case Intrinsic::vector_reduce_fmul: {
1418 Flags.noSignedZeros());
1419 }
1420 case Intrinsic::vector_reduce_umax:
1421 case Intrinsic::vector_reduce_umin:
1422 case Intrinsic::vector_reduce_smin:
1423 case Intrinsic::vector_reduce_smax: {
1426 }
1427 case Intrinsic::vector_reduce_fmax:
1428 case Intrinsic::vector_reduce_fmaximum:
1429 Negative = true;
1430 [[fallthrough]];
1431 case Intrinsic::vector_reduce_fmin:
1432 case Intrinsic::vector_reduce_fminimum: {
1433 bool PropagatesNaN = RdxID == Intrinsic::vector_reduce_fminimum ||
1434 RdxID == Intrinsic::vector_reduce_fmaximum;
1435 const fltSemantics &Semantics = Ty->getFltSemantics();
1436 return (!Flags.noNaNs() && !PropagatesNaN)
1438 : !Flags.noInfs()
1441 }
1442 }
1443}
1444
1448 "nnan, nsz is expected to be set for FP min/max reduction.");
1451}
1452
1455 auto *SrcVecEltTy = cast(Src->getType())->getElementType();
1456 auto getIdentity = [&]() {
1458 Builder.getFastMathFlags());
1459 };
1460 switch (RdxKind) {
1483 return Builder.CreateFAddReduce(getIdentity(), Src);
1485 return Builder.CreateFMulReduce(getIdentity(), Src);
1486 default:
1488 }
1489}
1490
1495 "AnyOf and FindIV reductions are not supported.");
1499 "No VPIntrinsic for this reduction");
1500 auto *EltTy = cast(Src->getType())->getElementType();
1502 Value *Ops[] = {Iden, Src, Mask, EVL};
1503 return Builder.CreateIntrinsic(EltTy, VPID, Ops);
1504}
1505
1509 "Unexpected reduction kind");
1510 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1511 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1512
1513 return B.CreateFAddReduce(Start, Src);
1514}
1515
1520 "Unexpected reduction kind");
1521 assert(Src->getType()->isVectorTy() && "Expected a vector type");
1522 assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
1523
1527 "No VPIntrinsic for this reduction");
1528 auto *EltTy = cast(Src->getType())->getElementType();
1529 Value *Ops[] = {Start, Src, Mask, EVL};
1530 return Builder.CreateIntrinsic(EltTy, VPID, Ops);
1531}
1532
1534 bool IncludeWrapFlags) {
1536 if (!VecOp)
1537 return;
1540 if (!Intersection)
1541 return;
1542 const unsigned Opcode = Intersection->getOpcode();
1543 VecOp->copyIRFlags(Intersection, IncludeWrapFlags);
1544 for (auto *V : VL) {
1546 if (!Instr)
1547 continue;
1548 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1549 VecOp->andIRFlags(V);
1550 }
1551}
1552
1559
1566
1573
1580
1591
1602
1603
1604
1605
1606
1607
1613 while (!WorkList.empty()) {
1615
1616 if (!L->contains(Curr))
1617 continue;
1618
1620 return true;
1621
1622 for (const auto *U : Curr->users()) {
1624 if (Visited.insert(UI).second)
1626 }
1627 }
1628 return false;
1629}
1630
1631
1632
1645
1646
1647
1648
1650 BasicBlock *Preheader = L->getLoopPreheader();
1651
1652 if (!Preheader)
1653 return false;
1654
1655
1656
1657
1658
1660 L->getExitingBlocks(ExitingBlocks);
1662 L->getUniqueExitBlocks(ExitBlocks);
1663 if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
1664 return false;
1665
1666 BasicBlock *ExitBlock = ExitBlocks[0];
1669 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
1670
1671
1672
1673
1674 bool found = false;
1675 for (const RewritePhi &Phi : RewritePhiSet) {
1676 unsigned i = Phi.Ith;
1677 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
1678 found = true;
1679 break;
1680 }
1681 }
1682
1685 if (!L->hasLoopInvariantOperands(I))
1686 return false;
1687
1688 ++BI;
1689 }
1690
1691 for (auto *BB : L->blocks())
1693 return I.mayHaveSideEffects();
1694 }))
1695 return false;
1696
1697 return true;
1698}
1699
1700
1701
1702
1705 if (!Phi)
1706 return false;
1707 if (!L->getLoopPreheader())
1708 return false;
1709 if (Phi->getParent() != L->getHeader())
1710 return false;
1712}
1713
1720
1721 assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1722 "Indvars did not preserve LCSSA!");
1723
1725 L->getUniqueExitBlocks(ExitBlocks);
1726
1728
1729
1730
1731 for (BasicBlock *ExitBB : ExitBlocks) {
1732
1733
1735 if (!PN) continue;
1736
1738
1739
1743 continue;
1744
1746 continue;
1747
1748
1749 for (unsigned i = 0; i != NumPreds; ++i) {
1750
1751
1754 continue;
1755
1756
1758 continue;
1759
1760
1762 if (!L->contains(Inst))
1763 continue;
1764
1765
1766
1767
1768
1769
1773 if (IndPhi) {
1775 continue;
1776
1777
1779 if (!isa(U) && !isa(U))
1780 return true;
1781 BinaryOperator *B = dyn_cast(U);
1782 if (B && B != ID.getInductionBinOp())
1783 return true;
1784 return false;
1785 }))
1786 continue;
1787 } else {
1788
1789
1791 if ()
1792 continue;
1794 PHINode *Phi = dyn_cast(U);
1795 if (Phi != PN && !checkIsIndPhi(Phi, L, SE, ID))
1796 return true;
1797 return false;
1798 }))
1799 continue;
1800 if (B != ID.getInductionBinOp())
1801 continue;
1802 }
1803 }
1804
1805
1806
1807
1808
1809
1810
1811 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
1814 !Rewriter.isSafeToExpand(ExitValue)) {
1815
1816
1817
1818
1821 continue;
1823 if (AddRec->getLoop() == L)
1824 ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
1827 !Rewriter.isSafeToExpand(ExitValue))
1828 continue;
1829 }
1830
1831
1832
1833
1834
1835
1838 continue;
1839
1840
1841 bool HighCost = Rewriter.isHighCostExpansion(
1843
1844
1845
1846
1847
1848
1849
1850
1853 &*Inst->getParent()->getFirstInsertionPt() : Inst;
1854 RewritePhiSet.emplace_back(PN, i, ExitValue, InsertPt, HighCost);
1855 }
1856 }
1857 }
1858
1859
1860
1861
1862
1863
1865 int NumReplaced = 0;
1866
1867
1868 for (const RewritePhi &Phi : RewritePhiSet) {
1870
1871
1872
1875 !LoopCanBeDel && Phi.HighCost)
1876 continue;
1877
1878 Value *ExitVal = Rewriter.expandCodeFor(
1879 Phi.ExpansionSCEV, Phi.PN->getType(), Phi.ExpansionPoint);
1880
1881 LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = " << *ExitVal
1882 << '\n'
1883 << " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
1884
1885#ifndef NDEBUG
1886
1887
1888
1890 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
1891 if (EVL != L)
1892 assert(EVL->contains(L) && "LCSSA breach detected!");
1893#endif
1894
1895 NumReplaced++;
1898
1899
1900
1901
1902
1904
1905
1906
1909
1910
1915 }
1916 }
1917
1918
1919
1920 Rewriter.clearInsertPoint();
1921 return NumReplaced;
1922}
1923
1924
1925
1926
1927template
1930
1931
1933
1934
1935
1937 assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
1939 "Must start with an empty preorder walk worklist.");
1940 PreOrderWorklist.push_back(RootL);
1941 do {
1943 PreOrderWorklist.append(L->begin(), L->end());
1945 } while (!PreOrderWorklist.empty());
1946
1947 Worklist.insert(std::move(PreOrderLoops));
1948 PreOrderLoops.clear();
1949 }
1950}
1951
1952template
1956}
1957
1961
1965
1970
1974 if (PL)
1975 PL->addChildLoop(&New);
1976 else
1978
1979 if (LPM)
1981
1982
1986
1987
1990
1991 return &New;
1992}
1993
1994
1995
1996
1997
2003
2004
2005
2011
2012 Value *Start = nullptr, *End = nullptr;
2013 LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2032 const SCEV *Recur = LowAR->getStepRecurrence(SE);
2033 if (Recur == HighAR->getStepRecurrence(SE) &&
2034 HighAR->getLoop() == OuterLoop && LowAR->getLoop() == OuterLoop) {
2036 const SCEV *OuterExitCount = SE.getExitCount(OuterLoop, OuterLoopLatch);
2039 const SCEV *NewHigh =
2042 LLVM_DEBUG(dbgs() << "LAA: Expanded RT check for range to include "
2043 "outer loop in order to permit hoisting\n");
2044 High = NewHigh;
2046
2047
2050 Stride = Recur;
2051 LLVM_DEBUG(dbgs() << "LAA: ... but need to check stride is "
2052 "positive: "
2053 << *Stride << '\n');
2054 }
2055 }
2056 }
2057 }
2058 }
2059
2060 Start = Exp.expandCodeFor(Low, PtrArithTy, Loc);
2061 End = Exp.expandCodeFor(High, PtrArithTy, Loc);
2064 Start = Builder.CreateFreeze(Start, Start->getName() + ".fr");
2065 End = Builder.CreateFreeze(End, End->getName() + ".fr");
2066 }
2067 Value *StrideVal =
2068 Stride ? Exp.expandCodeFor(Stride, Stride->getType(), Loc) : nullptr;
2070 return {Start, End, StrideVal};
2071}
2072
2073
2074
2079
2080
2081
2082 transform(PointerChecks, std::back_inserter(ChecksWithBounds),
2088 return std::make_pair(First, Second);
2089 });
2090
2091 return ChecksWithBounds;
2092}
2093
2098
2099
2100 auto ExpandedChecks =
2102
2106
2107 Value *MemoryRuntimeCheck = nullptr;
2108
2109 for (const auto &[A, B] : ExpandedChecks) {
2110
2111
2112
2113 assert((A.Start->getType()->getPointerAddressSpace() ==
2114 B.End->getType()->getPointerAddressSpace()) &&
2115 (B.Start->getType()->getPointerAddressSpace() ==
2116 A.End->getType()->getPointerAddressSpace()) &&
2117 "Trying to bounds check pointers with different address spaces");
2118
2119
2120
2121
2122
2123
2124
2125
2126
2129 Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
2130 if (A.StrideToCheck) {
2132 A.StrideToCheck, ConstantInt::get(A.StrideToCheck->getType(), 0),
2133 "stride.check");
2134 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
2135 }
2136 if (B.StrideToCheck) {
2138 B.StrideToCheck, ConstantInt::get(B.StrideToCheck->getType(), 0),
2139 "stride.check");
2140 IsConflict = ChkBuilder.CreateOr(IsConflict, IsNegativeStride);
2141 }
2142 if (MemoryRuntimeCheck) {
2143 IsConflict =
2144 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2145 }
2146 MemoryRuntimeCheck = IsConflict;
2147 }
2148
2149 Exp.eraseDeadInstructions(MemoryRuntimeCheck);
2150 return MemoryRuntimeCheck;
2151}
2152
2156
2160
2161 Value *MemoryRuntimeCheck = nullptr;
2162
2163 auto &SE = *Expander.getSE();
2164
2165
2167 for (const auto &[SrcStart, SinkStart, AccessSize, NeedsFreeze] : Checks) {
2168 Type *Ty = SinkStart->getType();
2169
2170 auto *VFTimesICTimesSize =
2171 ChkBuilder.CreateMul(GetVF(ChkBuilder, Ty->getScalarSizeInBits()),
2172 ConstantInt::get(Ty, IC * AccessSize));
2174 Expander.expandCodeFor(SE.getMinusSCEV(SinkStart, SrcStart), Ty, Loc);
2175
2176
2177
2178 Value *IsConflict = SeenCompares.lookup({Diff, VFTimesICTimesSize});
2179 if (IsConflict)
2180 continue;
2181
2182 IsConflict =
2183 ChkBuilder.CreateICmpULT(Diff, VFTimesICTimesSize, "diff.check");
2184 SeenCompares.insert({{Diff, VFTimesICTimesSize}, IsConflict});
2185 if (NeedsFreeze)
2186 IsConflict =
2188 if (MemoryRuntimeCheck) {
2189 IsConflict =
2190 ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
2191 }
2192 MemoryRuntimeCheck = IsConflict;
2193 }
2194
2196 return MemoryRuntimeCheck;
2197}
2198
2199std::optional
2203 if (!TI || !TI->isConditional())
2204 return {};
2205
2207
2208
2209
2210
2212 return {};
2213
2215 InstToDuplicate.push_back(CondI);
2216
2218 WorkList.append(CondI->op_begin(), CondI->op_end());
2219
2222 while (!WorkList.empty()) {
2224 if ( || !L.contains(I))
2225 continue;
2226
2227
2229 return {};
2230
2231
2233 if (LI->isVolatile() || LI->isAtomic())
2234 return {};
2235
2239
2240 AccessesToCheck.push_back(MemUse->getDefiningAccess());
2242 } else {
2243
2244
2245 return {};
2246 }
2247 }
2248 WorkList.append(I->op_begin(), I->op_end());
2249 }
2250
2251 if (InstToDuplicate.empty())
2252 return {};
2253
2255 L.getExitingBlocks(ExitingBlocks);
2256 auto HasNoClobbersOnPath =
2257 [&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
2260 -> std::optional {
2262
2263
2268 Seen.insert(Header);
2269 Info.PathIsNoop &=
2270 all_of(*Header, [](Instruction &I) { return .mayHaveSideEffects(); });
2271
2272 while (!WorkList.empty()) {
2274 if (!L.contains(Current))
2275 continue;
2276 const auto &SeenIns = Seen.insert(Current);
2277 if (!SeenIns.second)
2278 continue;
2279
2280 Info.PathIsNoop &= all_of(
2281 *Current, [](Instruction &I) { return .mayHaveSideEffects(); });
2283 }
2284
2285
2286
2287 if (Seen.size() < 2)
2288 return {};
2289
2290
2291
2292
2293
2295 while (!AccessesToCheck.empty()) {
2297 auto SeenI = SeenAccesses.insert(Current);
2299 continue;
2300
2301
2303 return {};
2304
2305
2307 continue;
2308
2309
2310
2314 AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
2315 }))
2316 return {};
2317 }
2318
2319 for (Use &U : Current->uses())
2321 }
2322
2323
2324
2326
2327
2328
2329
2330 if (Info.PathIsNoop) {
2331 for (auto *Exiting : ExitingBlocks) {
2332 if (!Seen.contains(Exiting))
2333 continue;
2334 for (auto *Succ : successors(Exiting)) {
2335 if (L.contains(Succ))
2336 continue;
2337
2338 Info.PathIsNoop &= Succ->phis().empty() &&
2339 (!Info.ExitForPath || Info.ExitForPath == Succ);
2340 if (!Info.PathIsNoop)
2341 break;
2342 assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
2343 "cannot have multiple exit blocks");
2344 Info.ExitForPath = Succ;
2345 }
2346 }
2347 }
2348 if (!Info.ExitForPath)
2349 Info.PathIsNoop = false;
2350
2351 Info.InstToDuplicate = InstToDuplicate;
2352 return Info;
2353 };
2354
2355
2356
2357 if (TI->getSuccessor(0) == TI->getSuccessor(1))
2358 return {};
2359
2360 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
2361 AccessesToCheck)) {
2363 return Info;
2364 }
2365 if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
2366 AccessesToCheck)) {
2368 return Info;
2369 }
2370
2371 return {};
2372}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
AMDGPU Register Bank Select
This is the interface for LLVM's primary stateless and local alias analysis.
bbsections Prepares for basic block by splitting functions into clusters of basic blocks
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define LLVM_EXPORT_TEMPLATE
This file defines the DenseSet and SmallDenseSet classes.
This is the interface for a simple mod/ref and alias analysis over globals.
static const HTTPClientCleanup Cleanup
Module.h This file contains the declarations for the Module class.
iv Induction Variable Users
static cl::opt< ReplaceExitVal > ReplaceExitValue("replexitval", cl::Hidden, cl::init(OnlyCheapRepl), cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), clEnumValN(OnlyCheapRepl, "cheap", "only replace exit value when the cost is cheap"), clEnumValN(UnusedIndVarInLoop, "unusedindvarinloop", "only replace exit value when it is an unused " "induction variable in the loop and has cheap replacement cost"), clEnumValN(NoHardUse, "noharduse", "only replace exit values when loop def likely dead"), clEnumValN(AlwaysRepl, "always", "always replace exit value whenever possible")))
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static cl::opt< bool, true > HoistRuntimeChecks("hoist-runtime-checks", cl::Hidden, cl::desc("Hoist inner loop runtime memory checks to outer loop if possible"), cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true))
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I)
Definition LoopUtils.cpp:1608
static const char * LLVMLoopDisableLICM
Definition LoopUtils.cpp:56
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG, Loop *TheLoop, Instruction *Loc, SCEVExpander &Exp, bool HoistRuntimeChecks)
Expand code for the lower and upper bound of the pointer group CG in TheLoop.
Definition LoopUtils.cpp:2006
static bool canLoopBeDeleted(Loop *L, SmallVector< RewritePhi, 8 > &RewritePhiSet)
Definition LoopUtils.cpp:1649
static const char * LLVMLoopDisableNonforced
Definition LoopUtils.cpp:55
static MDNode * createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V)
Create MDNode for input string.
Definition LoopUtils.cpp:204
static BranchInst * getExpectedExitLoopLatchBranch(Loop *L)
Checks if L has an exiting latch branch.
Definition LoopUtils.cpp:791
static std::optional< unsigned > estimateLoopTripCount(Loop *L)
Definition LoopUtils.cpp:820
static bool checkIsIndPhi(PHINode *Phi, Loop *L, ScalarEvolution *SE, InductionDescriptor &ID)
Checks if it is safe to call InductionDescriptor::isInductionPHI for Phi, and returns true if this Ph...
Definition LoopUtils.cpp:1703
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
#define INITIALIZE_PASS_DEPENDENCY(depName)
This file provides a priority worklist.
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
This is the interface for a SCEV-based alias analysis.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
A wrapper pass to provide the legacy pass manager access to a suitably prepared AAResults object.
static APFloat getLargest(const fltSemantics &Sem, bool Negative=false)
Returns the largest finite number in the given semantics.
Class for arbitrary precision integers.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Represent the analysis usage information of a pass.
LLVM_ABI AnalysisUsage & addRequiredID(const void *ID)
AnalysisUsage & addPreservedID(const void *ID)
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Legacy wrapper pass to provide the BasicAAResult object.
LLVM Basic Block Representation.
iterator begin()
Instruction iterator methods.
InstListType::iterator iterator
Instruction iterators...
LLVM_ABI LLVMContext & getContext() const
Get the context in which this basic block lives.
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Conditional or Unconditional Branch instruction.
unsigned getNumSuccessors() const
BasicBlock * getSuccessor(unsigned i) const
static LLVM_ABI BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
static BranchProbability getUnknown()
uint32_t getNumerator() const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ ICMP_SLT
signed less than
@ ICMP_SLE
signed less or equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
@ ICMP_ULT
unsigned less than
@ ICMP_SGE
signed greater or equal
static LLVM_ABI Constant * getIntrinsicIdentity(Intrinsic::ID, Type *Ty)
static LLVM_ABI Constant * getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant=false, bool NSZ=false)
Return the identity constant for a binary opcode.
static LLVM_ABI Constant * getInfinity(Type *Ty, bool Negative=false)
static LLVM_ABI Constant * getQNaN(Type *Ty, bool Negative=false, APInt *Payload=nullptr)
This is the shared class of boolean and integer constants.
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
static LLVM_ABI ConstantInt * getFalse(LLVMContext &Context)
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Record of a variable value-assignment, aka a non instruction representation of the dbg....
Identifies a unique instance of a variable.
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
iterator_range< iterator > children()
static constexpr UpdateKind Delete
static constexpr UpdateKind Insert
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Legacy analysis pass which computes a DominatorTree.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
LLVM_ABI bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
static constexpr ElementCount get(ScalarTy MinVal, bool Scalable)
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
void applyUpdates(ArrayRef< UpdateT > Updates)
Submit updates to all available trees.
Legacy wrapper pass to provide the GlobalsAAResult object.
Common base class shared among various IRBuilders.
Value * CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFreeze(Value *V, const Twine &Name="")
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="", bool IsDisjoint=false)
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
A struct for saving information about induction variables.
static LLVM_ABI bool isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr=nullptr, SmallVectorImpl< Instruction * > *CastsToIgnore=nullptr)
Returns true if Phi is an induction in the loop L.
InstSimplifyFolder - Use InstructionSimplify to fold operations to existing values.
LLVM_ABI unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
LLVM_ABI InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
LLVM_ABI bool mayHaveSideEffects() const LLVM_READONLY
Return true if the instruction may have side effects.
This is an important class for using LLVM in a threaded context.
bool contains(const LoopT *L) const
Return true if the specified loop is contained within in this loop.
typename std::vector< Loop * >::const_iterator iterator
BlockT * getLoopLatch() const
If there is a single latch block for this loop, return it.
BlockT * getHeader() const
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
void addTopLevelLoop(LoopT *New)
This adds the specified loop to the collection of top-level loops.
void removeBlock(BlockT *BB)
This method completely removes BB from all data structures, including all of the Loop objects it is n...
LoopT * AllocateLoop(ArgsTy &&...Args)
LoopT * removeLoop(iterator I)
This removes the specified top-level loop from this loop info object.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
void destroy(LoopT *L)
Destroy a loop that has been removed from the LoopInfo nest.
The legacy pass manager's analysis pass to compute loop information.
bool replacementPreservesLCSSAForm(Instruction *From, Value *To)
Returns true if replacing From with To everywhere is guaranteed to preserve LCSSA form.
LLVM_ABI void erase(Loop *L)
Update LoopInfo after removing the last backedge from a loop.
Represents a single loop in the control flow graph.
void setLoopID(MDNode *LoopID) const
Set the llvm.loop loop id metadata for this loop.
MDNode * getLoopID() const
Return the llvm.loop loop id metadata node for this loop if it is present.
LLVM_ABI void replaceOperandWith(unsigned I, Metadata *New)
Replace a specific operand.
const MDOperand & getOperand(unsigned I) const
ArrayRef< MDOperand > operands() const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
unsigned getNumOperands() const
Return number of MDNode operands.
LLVMContext & getContext() const
Tracking metadata reference owned by Metadata.
LLVM_ABI StringRef getString() const
static LLVM_ABI MDString * get(LLVMContext &Context, StringRef Str)
BasicBlock * getBlock() const
Representation for a specific memory location.
static LLVM_ABI MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
Legacy analysis pass which computes MemorySSA.
Encapsulates MemorySSA, including all data associated with memory accesses.
LLVM_ABI void verifyMemorySSA(VerificationLevel=VerificationLevel::Fast) const
Verify that MemorySSA is self consistent (IE definitions dominate all uses, uses appear in the right ...
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
void setIncomingValue(unsigned i, Value *V)
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
int getBasicBlockIndex(const BasicBlock *BB) const
Return the first index of the specified basic block in the value list for this PHI.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static LLVM_ABI PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
bool insert(const T &X)
Insert a new element into the PriorityWorklist.
static bool isSignedRecurrenceKind(RecurKind Kind)
Returns true if recurrece kind is a signed redux kind.
static bool isAnyOfRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindLastIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isFindIVRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is of the form select(cmp(),x,y) where one of (x,...
static bool isMinMaxRecurrenceKind(RecurKind Kind)
Returns true if the recurrence kind is any min/max kind.
A global registry used in conjunction with static constructors to make pluggable components (like tar...
Legacy wrapper pass to provide the SCEVAAResult object.
This class uses information about analyze scalars to rewrite expressions in canonical form.
ScalarEvolution * getSE()
LLVM_ABI Value * expandCodeFor(const SCEV *SH, Type *Ty, BasicBlock::iterator I)
Insert code to directly compute the specified SCEV expression into the program.
void eraseDeadInstructions(Value *Root)
Remove inserted instructions that are dead, e.g.
This class represents an analyzed expression in the program.
LLVM_ABI Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
LLVM_ABI bool isKnownNonNegative(const SCEV *S)
Test if the given expression is known to be non-negative.
LLVM_ABI bool isLoopEntryGuardedByCond(const Loop *L, CmpPredicate Pred, const SCEV *LHS, const SCEV *RHS)
Test whether entry to the loop is protected by a conditional between LHS and RHS.
LLVM_ABI const SCEV * getSCEVAtScope(const SCEV *S, const Loop *L)
Return a SCEV expression for the specified value at the specified scope in the program.
const SCEV * getZero(Type *Ty)
Return a SCEV for the constant 0 of a specific type.
LLVM_ABI const SCEV * getConstant(ConstantInt *V)
LLVM_ABI const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
LLVM_ABI void forgetLoop(const Loop *L)
This method should be called by the client when it has changed a loop in a way that may effect Scalar...
LLVM_ABI bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
LLVM_ABI LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L)
Return the "disposition" of the given SCEV with respect to the given loop.
LLVM_ABI bool isSCEVable(Type *Ty) const
Test if values of the given type are analyzable within the SCEV framework.
LLVM_ABI void forgetValue(Value *V)
This method should be called by the client when it has changed a value in a way that may effect its v...
LLVM_ABI void forgetBlockAndLoopDispositions(Value *V=nullptr)
Called when the client has changed the disposition of values in a loop or block.
LoopDisposition
An enum describing the relationship between a SCEV and a loop.
@ LoopInvariant
The SCEV is loop-invariant.
LLVM_ABI bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L)
Determine if the SCEV can be evaluated at loop's entry.
LLVM_ABI const SCEV * getExitCount(const Loop *L, const BasicBlock *ExitingBlock, ExitCountKind Kind=Exact)
Return the number of times the backedge executes before the given exit would be taken; if not exactly...
LLVM_ABI const SCEV * applyLoopGuards(const SCEV *Expr, const Loop *L)
Try to apply information from loop guards for L to Expr.
This class represents the LLVM 'select' instruction.
Implements a dense probed hash-table based set with some number of buckets stored inline.
A version of PriorityWorklist that selects small size optimized data structures for the vector and ma...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
A SetVector that performs no allocations if smaller than a certain size.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StringRef - Represent a constant reference to a string, i.e.
bool starts_with(StringRef Prefix) const
Check if this string starts with the given Prefix.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Value handle that tracks a Value across RAUW.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
static LLVM_ABI IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
A Use represents the edge between a Value definition and its users.
static LLVM_ABI Intrinsic::ID getForIntrinsic(Intrinsic::ID Id)
The llvm.vp.
static LLVM_ABI bool isVPReduction(Intrinsic::ID ID)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
iterator_range< user_iterator > users()
iterator_range< use_iterator > uses()
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
std::pair< iterator, bool > insert(const ValueT &V)
An efficient, type-erasing, non-owning reference to a callable.
const ParentTy * getParent() const
This class implements an extremely fast bulk output stream that can only output to a stream.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Abstract Attribute helper functions.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
LLVM_ABI Value * createSimpleReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind)
Create a reduction of the given vector.
Definition LoopUtils.cpp:1453
LLVM_ABI std::optional< ElementCount > getOptionalElementCountLoopAttribute(const Loop *TheLoop)
Find a combination of metadata ("llvm.loop.vectorize.width" and "llvm.loop.vectorize....
Definition LoopUtils.cpp:251
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
LLVM_ABI Value * addRuntimeChecks(Instruction *Loc, Loop *TheLoop, const SmallVectorImpl< RuntimePointerCheck > &PointerChecks, SCEVExpander &Expander, bool HoistRuntimeChecks=false)
Add code that checks at runtime if the accessed arrays in PointerChecks overlap.
Definition LoopUtils.cpp:2094
LLVM_ABI Value * createFindLastIVReduction(IRBuilderBase &B, Value *Src, RecurKind RdxKind, Value *Start, Value *Sentinel)
Create a reduction of the given vector Src for a reduction of the kind RecurKind::FindLastIV.
Definition LoopUtils.cpp:1387
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
void fill(R &&Range, T &&Value)
Provide wrappers to std::fill which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI std::optional< unsigned > getLoopEstimatedTripCount(Loop *L, unsigned *EstimatedLoopInvocationWeight=nullptr)
Return either:
Definition LoopUtils.cpp:869
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicOp(Intrinsic::ID RdxID)
Returns the min/max intrinsic used when expanding a min/max reduction.
Definition LoopUtils.cpp:1163
LLVM_ABI bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name)
Returns true if Name is applied to TheLoop and enabled.
std::pair< const RuntimeCheckingPtrGroup *, const RuntimeCheckingPtrGroup * > RuntimePointerCheck
A memcheck which made up of a pair of grouped pointers.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
LLVM_ABI bool isKnownNonPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-positive in loop L.
Definition LoopUtils.cpp:1574
LLVM_ABI std::optional< bool > getOptionalBoolLoopAttribute(const Loop *TheLoop, StringRef Name)
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
void appendReversedLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
Definition LoopUtils.cpp:1928
auto successors(const MachineBasicBlock *BB)
BranchProbability getBranchProbability(BranchInst *B, bool ForFirstTarget)
Based on branch weight metadata, return either:
Definition LoopUtils.cpp:1003
LLVM_ABI void initializeLoopPassPass(PassRegistry &)
Manually defined generic "LoopPass" dependency initialization.
Definition LoopUtils.cpp:190
constexpr from_range_t from_range
LLVM_ABI bool formLCSSARecursively(Loop &L, const DominatorTree &DT, const LoopInfo *LI, ScalarEvolution *SE)
Put a loop nest into LCSSA form.
LLVM_ABI Value * getReductionIdentity(Intrinsic::ID RdxID, Type *Ty, FastMathFlags FMF)
Given information about an @llvm.vector.reduce.
Definition LoopUtils.cpp:1403
LLVM_ABI std::optional< MDNode * > makeFollowupLoopID(MDNode *OrigLoopID, ArrayRef< StringRef > FollowupAttrs, const char *InheritOptionsAttrsPrefix="", bool AlwaysNew=false)
Create a new loop identifier for a loop created from a loop transformation.
Definition LoopUtils.cpp:264
LLVM_ABI unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
Definition LoopUtils.cpp:1115
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
LLVM_ABI char & LoopSimplifyID
LLVM_ABI Value * createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left, Value *Right)
Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
Definition LoopUtils.cpp:1256
LLVM_ABI SmallVector< BasicBlock *, 16 > collectChildrenInLoop(DominatorTree *DT, DomTreeNode *N, const Loop *CurLoop)
Does a BFS from a given node to all of its children inside a given loop.
Definition LoopUtils.cpp:450
LLVM_ABI void addStringMetadataToLoop(Loop *TheLoop, const char *MDString, unsigned V=0)
Set input string into loop metadata by keeping other values intact.
Definition LoopUtils.cpp:215
LLVM_ABI bool cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned max.
Definition LoopUtils.cpp:1592
LLVM_ABI void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected, bool ElideAllZero=false)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
DomTreeNodeBase< BasicBlock > DomTreeNode
constexpr T divideNearest(U Numerator, V Denominator)
Returns (Numerator / Denominator) rounded by round-half-up.
LLVM_ABI TransformationMode hasVectorizeTransformation(const Loop *L)
Definition LoopUtils.cpp:392
bool setBranchProbability(BranchInst *B, BranchProbability P, bool ForFirstTarget)
Set branch weight metadata for B to indicate that P and 1 - P are the probabilities of control flowin...
Definition LoopUtils.cpp:1018
auto dyn_cast_or_null(const Y &Val)
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F)
Wrapper function around std::transform to apply a function to a range and store the result elsewhere.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
LLVM_ABI bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
LLVM_ABI SmallVector< Instruction *, 8 > findDefsUsedOutsideOfLoop(Loop *L)
Returns the instructions that use values defined in the loop.
Definition LoopUtils.cpp:124
auto reverse(ContainerTy &&C)
LLVM_ABI constexpr Intrinsic::ID getReductionIntrinsicID(RecurKind RK)
Returns the llvm.vector.reduce intrinsic that corresponds to the recurrence kind.
Definition LoopUtils.cpp:1053
LLVM_ABI bool isMustProgress(const Loop *L)
Return true if this loop can be assumed to make progress.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
bool isModSet(const ModRefInfo MRI)
LLVM_ABI TransformationMode hasUnrollAndJamTransformation(const Loop *L)
Definition LoopUtils.cpp:374
LLVM_ABI void deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI, MemorySSA *MSSA=nullptr)
This function deletes dead loops.
Definition LoopUtils.cpp:485
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
LLVM_ABI bool hasDisableAllTransformsHint(const Loop *L)
Look for the loop attribute that disables all transformation heuristic.
Definition LoopUtils.cpp:345
LLVM_TEMPLATE_ABI void appendLoopsToWorklist(RangeT &&, SmallPriorityWorklist< Loop *, 4 > &)
Utility that implements appending of loops onto a worklist given a range.
LLVM_ABI cl::opt< unsigned > SCEVCheapExpansionBudget
FunctionAddr VTableAddr Count
LLVM_ABI Value * getShuffleReduction(IRBuilderBase &Builder, Value *Src, unsigned Op, TargetTransformInfo::ReductionShuffle RS, RecurKind MinMaxKind=RecurKind::None)
Generates a vector reduction using shufflevectors to reduce the value.
Definition LoopUtils.cpp:1299
LLVM_ABI TransformationMode hasUnrollTransformation(const Loop *L)
Definition LoopUtils.cpp:353
BranchProbability getLoopProbability(Loop *L)
Based on branch weight metadata, return either:
Definition LoopUtils.cpp:987
LLVM_ABI TransformationMode hasDistributeTransformation(const Loop *L)
Definition LoopUtils.cpp:428
LLVM_ABI void breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI, MemorySSA *MSSA)
Remove the backedge of the specified loop.
Definition LoopUtils.cpp:711
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
LLVM_ABI void getLoopAnalysisUsage(AnalysisUsage &AU)
Helper to consistently add the set of standard passes to a loop pass's AnalysisUsage.
Definition LoopUtils.cpp:142
LLVM_ABI void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
Definition LoopUtils.cpp:1533
LLVM_ABI bool isKnownPositiveInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always positive in loop L.
Definition LoopUtils.cpp:1567
LLVM_ATTRIBUTE_VISIBILITY_DEFAULT AnalysisKey InnerAnalysisManagerProxy< AnalysisManagerT, IRUnitT, ExtraArgTs... >::Key
LLVM_ABI unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA=false, DomTreeUpdater *DTU=nullptr, MemorySSAUpdater *MSSAU=nullptr)
Insert an unreachable instruction before the specified instruction, making it and the rest of the cod...
RNSuccIterator< NodeRef, BlockT, RegionT > succ_begin(NodeRef Node)
LLVM_ABI std::optional< int > getOptionalIntLoopAttribute(const Loop *TheLoop, StringRef Name)
Find named metadata for a loop with an integer value.
bool setLoopProbability(Loop *L, BranchProbability P)
Set branch weight metadata for the latch of L to indicate that, at the end of any iteration,...
Definition LoopUtils.cpp:995
LLVM_ABI BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
LLVM_ABI CmpInst::Predicate getMinMaxReductionPredicate(RecurKind RK)
Returns the comparison predicate used when expanding a min/max reduction.
Definition LoopUtils.cpp:1234
LLVM_ABI TransformationMode hasLICMVersioningTransformation(const Loop *L)
Definition LoopUtils.cpp:438
LLVM_ABI bool VerifyMemorySSA
Enables verification of MemorySSA.
TransformationMode
The mode sets how eager a transformation should be applied.
@ TM_Unspecified
The pass can use heuristics to determine whether a transformation should be applied.
@ TM_SuppressedByUser
The transformation must not be applied.
@ TM_ForcedByUser
The transformation was directed by the user, e.g.
@ TM_Disable
The transformation should not be applied.
@ TM_Enable
The transformation should be applied without considering a cost model.
RNSuccIterator< NodeRef, BlockT, RegionT > succ_end(NodeRef Node)
LLVM_ABI bool hasDisableLICMTransformsHint(const Loop *L)
Look for the loop attribute that disables the LICM transformation heuristics.
Definition LoopUtils.cpp:349
template LLVM_TEMPLATE_ABI void appendLoopsToWorklist< Loop & >(Loop &L, SmallPriorityWorklist< Loop *, 4 > &Worklist)
LLVM_ABI Intrinsic::ID getReductionForBinop(Instruction::BinaryOps Opc)
Returns the reduction intrinsic id corresponding to the binary operation.
Definition LoopUtils.cpp:1145
RecurKind
These are the kinds of recurrences that we support.
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FMinimumNum
FP min with llvm.minimumnum semantics.
@ Or
Bitwise or logical OR of integers.
@ FMinimum
FP min with llvm.minimum semantics.
@ FMaxNum
FP max with llvm.maxnum semantics including NaNs.
@ Mul
Product of integers.
@ AnyOf
AnyOf reduction with select(cmp(),x,y) where one of (x,y) is loop invariant, and both x and y are int...
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMaximum
FP max with llvm.maximum semantics.
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ FMinNum
FP min with llvm.minnum semantics including NaNs.
@ Sub
Subtraction of integers.
@ AddChainWithSubs
A chain of adds and subs.
@ FMaximumNum
FP max with llvm.maximumnum semantics.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
LLVM_ABI Value * getRecurrenceIdentity(RecurKind K, Type *Tp, FastMathFlags FMF)
Given information about an recurrence kind, return the identity for the @llvm.vector....
Definition LoopUtils.cpp:1445
LLVM_ABI bool formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, MemorySSAUpdater *MSSAU, bool PreserveLCSSA)
Ensure that all exit blocks of the loop are dedicated exits.
Definition LoopUtils.cpp:58
DWARFExpression::Operation Op
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
LLVM_ABI bool isKnownNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always negative in loop L.
Definition LoopUtils.cpp:1553
constexpr unsigned BitWidth
ValueMap< const Value *, WeakTrackingVH > ValueToValueMapTy
LLVM_ABI bool setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount, std::optional< unsigned > EstimatedLoopInvocationWeight=std::nullopt)
Set llvm.loop.estimated_trip_count with the value EstimatedTripCount in the loop metadata of L.
Definition LoopUtils.cpp:942
LLVM_ABI bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
LLVM_ABI const char * LLVMLoopEstimatedTripCount
Profile-based loop metadata that should be accessed only by using llvm::getLoopEstimatedTripCount and...
LLVM_ABI bool hasIterationCountInvariantInParent(Loop *L, ScalarEvolution &SE)
Check inner loop (L) backedge count is known to be invariant on all iterations of its outer loop.
Definition LoopUtils.cpp:1031
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
static cl::opt< unsigned > MSSAThreshold("simple-loop-unswitch-memoryssa-threshold", cl::desc("Max number of memory uses to explore during " "partial unswitching analysis"), cl::init(100), cl::Hidden)
LLVM_ABI bool isAlmostDeadIV(PHINode *IV, BasicBlock *LatchBlock, Value *Cond)
Return true if the induction variable IV in a Loop whose latch is LatchBlock would become dead if the...
Definition LoopUtils.cpp:471
auto predecessors(const MachineBasicBlock *BB)
LLVM_ABI int rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI, ScalarEvolution *SE, const TargetTransformInfo *TTI, SCEVExpander &Rewriter, DominatorTree *DT, ReplaceExitVal ReplaceExitValue, SmallVector< WeakTrackingVH, 16 > &DeadInsts)
If the final value of any expressions that are recurrent in the loop can be computed,...
Definition LoopUtils.cpp:1714
LLVM_ABI Value * createOrderedReduction(IRBuilderBase &B, RecurKind RdxKind, Value *Src, Value *Start)
Create an ordered reduction intrinsic using the given recurrence kind RdxKind.
Definition LoopUtils.cpp:1506
LLVM_ABI Value * addDiffRuntimeChecks(Instruction *Loc, ArrayRef< PointerDiffInfo > Checks, SCEVExpander &Expander, function_ref< Value *(IRBuilderBase &, unsigned)> GetVF, unsigned IC)
Definition LoopUtils.cpp:2153
LLVM_ABI RecurKind getMinMaxReductionRecurKind(Intrinsic::ID RdxID)
Returns the recurence kind used when expanding a min/max reduction.
Definition LoopUtils.cpp:1215
LLVM_ABI BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
LLVM_ABI std::optional< IVConditionInfo > hasPartialIVCondition(const Loop &L, unsigned MSSAThreshold, const MemorySSA &MSSA, AAResults &AA)
Check if the loop header has a conditional branch that is not loop-invariant, because it involves loa...
Definition LoopUtils.cpp:2200
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
LLVM_ABI Value * createAnyOfReduction(IRBuilderBase &B, Value *Src, Value *InitVal, PHINode *OrigPhi)
Create a reduction of the given vector Src for a reduction of kind RecurKind::AnyOf.
Definition LoopUtils.cpp:1357
LLVM_ABI bool cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, bool Signed)
Returns true if S is defined and never is equal to signed/unsigned min.
Definition LoopUtils.cpp:1581
LLVM_ABI bool isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE)
Returns true if we can prove that S is defined and always non-negative in loop L.
Definition LoopUtils.cpp:1560
LLVM_ABI Value * getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src, unsigned Op, RecurKind MinMaxKind=RecurKind::None)
Generates an ordered vector reduction using extracts to reduce the value.
Definition LoopUtils.cpp:1274
LLVM_ABI MDNode * findOptionMDForLoopID(MDNode *LoopID, StringRef Name)
Find and return the loop attribute node for the attribute Name in LoopID.
LLVM_ABI Intrinsic::ID getMinMaxReductionIntrinsicID(Intrinsic::ID IID)
Returns the llvm.vector.reduce min/max intrinsic that corresponds to the intrinsic op.
Definition LoopUtils.cpp:1099
LLVM_ABI Loop * cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM, LoopInfo *LI, LPPassManager *LPM)
Recursively clone the specified loop and all of its children, mapping the blocks with the specified m...
Definition LoopUtils.cpp:1971
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition LoopUtils.cpp:807
DbgLoop(const Loop *L)
Definition LoopUtils.cpp:809
const Loop * L
Definition LoopUtils.cpp:808
IR Values for the lower and upper bounds of a pointer evolution.
Definition LoopUtils.cpp:1998
TrackingVH< Value > Start
Definition LoopUtils.cpp:1999
TrackingVH< Value > End
Definition LoopUtils.cpp:2000
Value * StrideToCheck
Definition LoopUtils.cpp:2001
Definition LoopUtils.cpp:1633
bool HighCost
Definition LoopUtils.cpp:1638
unsigned Ith
Definition LoopUtils.cpp:1635
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt, bool H)
Definition LoopUtils.cpp:1640
const SCEV * ExpansionSCEV
Definition LoopUtils.cpp:1636
PHINode * PN
Definition LoopUtils.cpp:1634
Instruction * ExpansionPoint
Definition LoopUtils.cpp:1637
Struct to hold information about a partially invariant condition.
Incoming for lane maks phi as machine instruction, incoming register Reg and incoming block Block are...
unsigned AddressSpace
Address space of the involved pointers.
bool NeedsFreeze
Whether the pointer needs to be frozen after expansion, e.g.
const SCEV * High
The SCEV expression which represents the upper bound of all the pointers in this group.
const SCEV * Low
The SCEV expression which represents the lower bound of all the pointers in this group.