LLVM: include/llvm/CodeGen/MachinePipeliner.h Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40#ifndef LLVM_CODEGEN_MACHINEPIPELINER_H
41#define LLVM_CODEGEN_MACHINEPIPELINER_H
42
55
56#include
57
58namespace llvm {
59
60class AAResults;
62class SMSchedule;
63
66
67
68
70public:
80
81#ifndef NDEBUG
83#endif
84
85
93 nullptr;
94 };
96
98
101 }
102
104
106
107private:
111 bool swingModuloScheduler(MachineLoop &L);
112 void setPragmaPipelineOptions(MachineLoop &L);
114 bool useSwingModuloScheduler();
115 bool useWindowScheduler(bool Changed);
116};
117
118
120 SUnit *Dst = nullptr;
122 unsigned Distance = 0;
123
124public:
125
126
127
128
130 : Dst(PredOrSucc), Pred(Dep), Distance(0u) {
132
133 if (IsSucc) {
136 }
137
138
140 Distance = 1;
144 }
145 }
146
147
149
150
152
153
155
156
158
159
161
162
164
165
167
168
170
171
173
174
175
177
178
180
181
183
184
186
187
188
189
191};
192
193
194
195
196
197
200
201 struct SwingSchedulerDDGEdges {
204 };
205
206 void initEdges(SUnit *SU);
207
210
211 std::vector EdgesVec;
212 SwingSchedulerDDGEdges EntrySUEdges;
213 SwingSchedulerDDGEdges ExitSUEdges;
214
216
217 SwingSchedulerDDGEdges &getEdges(const SUnit *SU);
218 const SwingSchedulerDDGEdges &getEdges(const SUnit *SU) const;
219
220public:
222
224
226};
227
228
229
232
233 std::unique_ptr DDG;
234
235
236 unsigned MII = 0;
237
238 unsigned MAX_II = 0;
239
240 bool Scheduled = false;
244 unsigned II_setByPragma = 0;
246
247
248
250
251 struct NodeInfo {
252 int ASAP = 0;
253 int ALAP = 0;
254 int ZeroLatencyDepth = 0;
255 int ZeroLatencyHeight = 0;
256
257 NodeInfo() = default;
258 };
259
260 std::vector ScheduleInfo;
261
262 enum OrderKind { BottomUp = 0, TopDown = 1 };
263
265
270
271
273
274
275
277
278
279 std::vector<std::unique_ptr> Mutations;
280
281
282 class Circuits {
283 std::vector &SUnits;
288
289 std::vector *Node2Idx;
290 unsigned NumPaths = 0u;
291 static unsigned MaxPaths;
292
293 public:
295 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
296 Node2Idx = new std::vector(SUs.size());
297 unsigned Idx = 0;
298 for (const auto &NodeNum : Topo)
299 Node2Idx->at(NodeNum) = Idx++;
300 }
301 Circuits &operator=(const Circuits &other) = delete;
302 Circuits(const Circuits &other) = delete;
303 ~Circuits() { delete Node2Idx; }
304
305
306 void reset() {
307 Stack.clear();
310 NumPaths = 0;
311 }
312
314 bool circuit(int V, int S, NodeSetType &NodeSets,
316 void unblock(int U);
317 };
318
321 };
322
323public:
328 RegClassInfo(rci), II_setByPragma(II), LoopPipelinerInfo(PLI),
330 P.MF->getSubtarget().getSMSMutations(Mutations);
332 Mutations.push_back(std::make_unique());
333 }
334
337
338
340
341
343
344
346
347
348
350
351
353
354
355
357 return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
358 }
359
360
362
363
364
366 return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
367 }
368
370
372
374
375
376
379 InstrChanges.find(SU);
380 if (It != InstrChanges.end())
381 return It->second.first;
382 return 0;
383 }
384
386 Mutations.push_back(std::move(Mutation));
387 }
388
390
392
393private:
394 void addLoopCarriedDependences(AAResults *AA);
395 void updatePhiDependences();
396 void changeDependences();
397 unsigned calculateResMII();
398 unsigned calculateRecMII(NodeSetType &RecNodeSets);
399 void findCircuits(NodeSetType &NodeSets);
400 void fuseRecs(NodeSetType &NodeSets);
401 void removeDuplicateNodes(NodeSetType &NodeSets);
402 void computeNodeFunctions(NodeSetType &NodeSets);
403 void registerPressureFilter(NodeSetType &NodeSets);
404 void colocateNodeSets(NodeSetType &NodeSets);
405 void checkNodeSets(NodeSetType &NodeSets);
406 void groupRemainingNodes(NodeSetType &NodeSets);
407 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
409 void computeNodeOrder(NodeSetType &NodeSets);
410 void checkValidNodeOrder(const NodeSetType &Circuits) const;
411 bool schedulePipeline(SMSchedule &Schedule);
412 bool computeDelta(MachineInstr &MI, unsigned &Delta) const;
414 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
415 unsigned &OffsetPos, unsigned &NewBase,
416 int64_t &NewOffset);
417 void postProcessDAG();
418
419 void setMII(unsigned ResMII, unsigned RecMII);
420
421 void setMAX_II();
422};
423
424
425
428 bool HasRecurrence = false;
429 unsigned RecMII = 0;
430 int MaxMOV = 0;
431 unsigned MaxDepth = 0;
432 unsigned Colocate = 0;
433 SUnit *ExceedPressure = nullptr;
434 unsigned Latency = 0;
435
436public:
438
441 : Nodes(S, E), HasRecurrence(true) {
442
443
444
445
446
447
448
449
450
451
452
453
454
455
458 for (auto *Node : Nodes)
459 SUnitToDistance[Node] = 0;
460
461 for (unsigned I = 1, E = Nodes.size(); I <= E; ++I) {
463 SUnit *V = Nodes[I % Nodes.size()];
465 SUnit *SuccSUnit = Succ.getDst();
466 if (V != SuccSUnit)
467 continue;
468 if (SUnitToDistance[U] + Succ.getLatency() > SUnitToDistance[V]) {
469 SUnitToDistance[V] = SUnitToDistance[U] + Succ.getLatency();
470 }
471 }
472 }
473
474 SUnit *FirstNode = Nodes[0];
475 SUnit *LastNode = Nodes[Nodes.size() - 1];
476
477 for (auto &PI : DDG->getInEdges(LastNode)) {
478
479
480
481
482 if (PI.getSrc() != FirstNode || !PI.isOrderDep() ||
484 continue;
485 SUnitToDistance[FirstNode] =
486 std::max(SUnitToDistance[FirstNode], SUnitToDistance[LastNode] + 1);
487 }
488
489
490 Latency = SUnitToDistance[Nodes.front()];
491 }
492
494
496
497 template bool remove_if(UnaryPredicate P) {
499 }
500
502
504
505 unsigned size() const { return Nodes.size(); }
506
508
510
511 void setRecMII(unsigned mii) { RecMII = mii; };
512
514
516
518
520
522
523
525 for (SUnit *SU : *this) {
526 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
527 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
528 }
529 }
530
532
534
537 RecMII = 0;
538 HasRecurrence = false;
539 MaxMOV = 0;
540 MaxDepth = 0;
541 Colocate = 0;
542 ExceedPressure = nullptr;
543 }
544
546
547
548
549
550
552 if (RecMII == RHS.RecMII) {
553 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
554 return Colocate < RHS.Colocate;
555 if (MaxMOV == RHS.MaxMOV)
556 return MaxDepth > RHS.MaxDepth;
557 return MaxMOV < RHS.MaxMOV;
558 }
559 return RecMII > RHS.RecMII;
560 }
561
563 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
564 MaxDepth == RHS.MaxDepth;
565 }
566
568
572
573#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
575#endif
576};
577
578
579
581
583private:
589 const bool UseDFA;
590
592
593
595
596
597
599
600
601
602
604 int InitiationInterval = 0;
605
606 int IssueWidth;
607
608 int calculateResMIIDFA() const;
609
610 bool isOverbooked() const;
611
613
615
616
617
618
619 int positiveModulo(int Dividend, int Divisor) const {
621 int R = Dividend % Divisor;
622 if (R < 0)
623 R += Divisor;
624 return R;
625 }
626
627#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
629#endif
630
631public:
633 : STI(ST), SM(ST->getSchedModel()), ST(ST), TII(ST->getInstrInfo()),
634 DAG(DAG), UseDFA(ST->useDFAforSMS()),
635 ProcResourceMasks(SM.getNumProcResourceKinds(), 0),
636 IssueWidth(SM.IssueWidth) {
638 if (IssueWidth <= 0)
639
640 IssueWidth = 100;
643 }
644
647
648
649
651
652
653
654 void reserveResources(SUnit &SU, int Cycle);
655
657
658
660};
661
662
663
664
665
666
667
668
669
671private:
672
674
675
676 std::map<SUnit *, int> InstrToCycle;
677
678
679
680 int FirstCycle = 0;
681
682
683 int LastCycle = 0;
684
685
686 int InitiationInterval = 0;
687
688
690
691
693
695
696public:
698 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
699 ProcItinResources(&ST, DAG) {}
700
702 ScheduledInstrs.clear();
703 InstrToCycle.clear();
704 FirstCycle = 0;
705 LastCycle = 0;
706 InitiationInterval = 0;
707 }
708
709
711 InitiationInterval = ii;
712 ProcItinResources.init(ii);
713 }
714
715
717
718
719
721
722
723 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
724
725
726
729
730
731
734
735 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int II,
737 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
738
739
743
744
747 }
748
749
750
752 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
753 if (it == InstrToCycle.end())
754 return -1;
755 return (it->second - FirstCycle) / InitiationInterval;
756 }
757
758
759
761 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
762 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
763 return (it->second - FirstCycle) % InitiationInterval;
764 }
765
766
768 return (LastCycle - FirstCycle) / InitiationInterval;
769 }
770
771
773 return ScheduledInstrs[cycle];
774 }
775
779
780 std::deque<SUnit *>
782 const std::deque<SUnit *> &Instrs) const;
783
784 bool
790 std::deque<SUnit *> &Insts) const;
794
798 void dump() const;
799};
800
801}
802
803#endif
unsigned const MachineRegisterInfo * MRI
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
uint64_t IntrinsicInst * II
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file implements a set that has insertion order iteration characteristics.
Represent the analysis usage information of a pass.
iterator find(const_arg_type_t< KeyT > Val)
A possibly irreducible generalization of a Loop.
Itinerary data supplied by a subtarget to be used by a target.
Represents a single loop in the control flow graph.
Generic base class for all target subtargets.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
Representation of each machine instruction.
MachineOperand class - Representation of each machine instruction operand.
The main class in the implementation of the target independent software pipeliner pass.
const TargetInstrInfo * TII
bool runOnMachineFunction(MachineFunction &MF) override
The "main" function for implementing Swing Modulo Scheduling.
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const MachineDominatorTree * MDT
const MachineLoopInfo * MLI
MachineOptimizationRemarkEmitter * ORE
RegisterClassInfo RegClassInfo
const InstrItineraryData * InstrItins
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A NodeSet contains a set of SUnit DAG nodes with additional information that assigns a priority to th...
SUnit * getNode(unsigned i) const
SetVector< SUnit * >::const_iterator iterator
void print(raw_ostream &os) const
bool isExceedSU(SUnit *SU)
void insert(iterator S, iterator E)
void setRecMII(unsigned mii)
void computeNodeSetInfo(SwingSchedulerDAG *SSD)
Summarize node functions for the entire node set.
unsigned count(SUnit *SU) const
void setColocate(unsigned c)
NodeSet(iterator S, iterator E, const SwingSchedulerDAG *DAG)
bool operator>(const NodeSet &RHS) const
Sort the node sets by importance.
int compareRecMII(NodeSet &RHS)
bool operator!=(const NodeSet &RHS) const
LLVM_DUMP_METHOD void dump() const
bool operator==(const NodeSet &RHS) const
bool remove_if(UnaryPredicate P)
void setExceedPressure(SUnit *SU)
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
Pass interface - Implemented by all 'passes'.
Wrapper class representing virtual and physical registers.
int calculateResMII() const
void initProcResourceVectors(const MCSchedModel &SM, SmallVectorImpl< uint64_t > &Masks)
ResourceManager(const TargetSubtargetInfo *ST, ScheduleDAGInstrs *DAG)
void init(int II)
Initialize resources with the initiation interval II.
bool canReserveResources(SUnit &SU, int Cycle)
Check if the resources occupied by a machine instruction are available in the current state.
Kind getKind() const
Returns an enum value representing the kind of the dependence.
@ Output
A register output-dependence (aka WAW).
@ Order
Any other ordering dependency.
@ Anti
A register anti-dependence (aka WAR).
@ Data
Regular data dependence (aka true-dependence).
void setLatency(unsigned Lat)
Sets the latency for this edge.
unsigned getLatency() const
Returns the latency value for this edge, which roughly means the minimum number of cycles that must e...
bool isAssignedRegDep() const
Tests if this is a Data dependence that is associated with a register.
bool isArtificial() const
Tests if this is an Order dependence that is marked as "artificial", meaning it isn't necessary for c...
unsigned getReg() const
Returns the register associated with this edge.
bool isBarrier() const
Tests if this is an Order dependence that is marked as a barrier.
This class represents the scheduled code.
std::deque< SUnit * > reorderInstructions(const SwingSchedulerDAG *SSD, const std::deque< SUnit * > &Instrs) const
void setInitiationInterval(int ii)
Set the initiation interval for this schedule.
SmallSet< SUnit *, 8 > computeUnpipelineableNodes(SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI)
Determine transitive dependences of unpipelineable instructions.
void dump() const
Utility function used for debugging to print the schedule.
bool insert(SUnit *SU, int StartCycle, int EndCycle, int II)
Try to schedule the node at the specified StartCycle and continue until the node is schedule or the E...
int earliestCycleInChain(const SwingSchedulerDDGEdge &Dep, const SwingSchedulerDDG *DDG)
Return the cycle of the earliest scheduled instruction in the dependence chain.
unsigned getMaxStageCount()
Return the maximum stage count needed for this schedule.
void print(raw_ostream &os) const
Print the schedule information to the given output.
bool onlyHasLoopCarriedOutputOrOrderPreds(SUnit *SU, const SwingSchedulerDDG *DDG) const
Return true if all scheduled predecessors are loop-carried output/order dependencies.
int stageScheduled(SUnit *SU) const
Return the stage for a scheduled instruction.
bool isScheduledAtStage(SUnit *SU, unsigned StageNum)
Return true if the instruction is scheduled at the specified stage.
void orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, std::deque< SUnit * > &Insts) const
Order the instructions within a cycle so that the definitions occur before the uses.
bool isValidSchedule(SwingSchedulerDAG *SSD)
int getInitiationInterval() const
Return the initiation interval for this schedule.
std::deque< SUnit * > & getInstructions(int cycle)
Return the instructions that are scheduled at the specified cycle.
int getFirstCycle() const
Return the first cycle in the completed schedule.
bool isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, MachineInstr *Def, MachineOperand &MO) const
Return true if the instruction is a definition that is loop carried and defines the use on the next i...
unsigned cycleScheduled(SUnit *SU) const
Return the cycle for a scheduled instruction.
void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int II, SwingSchedulerDAG *DAG)
Compute the scheduling start slot for the instruction.
SMSchedule(MachineFunction *mf, SwingSchedulerDAG *DAG)
bool normalizeNonPipelinedInstructions(SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI)
bool isLoopCarried(const SwingSchedulerDAG *SSD, MachineInstr &Phi) const
Return true if the scheduled Phi has a loop carried operand.
int latestCycleInChain(const SwingSchedulerDDGEdge &Dep, const SwingSchedulerDDG *DDG)
Return the cycle of the latest scheduled instruction in the dependence chain.
int getFinalCycle() const
Return the last cycle in the finalized schedule.
void finalizeSchedule(SwingSchedulerDAG *SSD)
After the schedule has been formed, call this function to combine the instructions from the different...
Scheduling unit. This is a node in the scheduling DAG.
A ScheduleDAG for scheduling lists of MachineInstr.
const MachineLoopInfo * MLI
Mutate the DAG as a postpass after normal DAG building.
This class can compute a topological ordering for SUnits and provides methods for dynamically updatin...
std::vector< SUnit > SUnits
The scheduling units.
MachineFunction & MF
Machine function.
SUnit ExitSU
Special node for the region exit.
A vector that has set insertion semantics.
bool remove_if(UnaryPredicate P)
Remove items from the set vector based on a predicate function.
size_type size() const
Determine the number of elements in the SetVector.
iterator end()
Get an iterator to the end of the SetVector.
typename vector_type::const_iterator const_iterator
void clear()
Completely clear the SetVector.
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
bool empty() const
Determine if the SetVector is empty or not.
iterator begin()
Get an iterator to the beginning of the SetVector.
bool insert(const value_type &X)
Insert a new element into the SetVector.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class builds the dependence graph for the instructions in a loop, and attempts to schedule the i...
unsigned getInstrBaseReg(SUnit *SU) const
Return the new base register that was stored away for the changed instruction.
unsigned getDepth(SUnit *Node)
The depth, in the dependence graph, for a node.
int getASAP(SUnit *Node)
Return the earliest time an instruction may be scheduled.
void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule)
Apply changes to the instruction if needed.
const SwingSchedulerDDG * getDDG() const
void finishBlock() override
Clean up after the software pipeliner runs.
void fixupRegisterOverlaps(std::deque< SUnit * > &Instrs)
Attempt to fix the degenerate cases when the instruction serialization causes the register lifetimes ...
bool hasNewSchedule()
Return true if the loop kernel has been scheduled.
void addMutation(std::unique_ptr< ScheduleDAGMutation > Mutation)
SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, const RegisterClassInfo &rci, unsigned II, TargetInstrInfo::PipelinerLoopInfo *PLI)
int getZeroLatencyDepth(SUnit *Node)
The maximum unweighted length of a path from an arbitrary node to the given node in which each edge h...
bool isLoopCarriedDep(const SwingSchedulerDDGEdge &Edge) const
Return true for an order or output dependence that is loop carried potentially.
void schedule() override
We override the schedule function in ScheduleDAGInstrs to implement the scheduling part of the Swing ...
int getMOV(SUnit *Node)
The mobility function, which the number of slots in which an instruction may be scheduled.
int getZeroLatencyHeight(SUnit *Node)
The maximum unweighted length of a path from the given node to an arbitrary node in which each edge h...
static bool classof(const ScheduleDAGInstrs *DAG)
unsigned getHeight(SUnit *Node)
The height, in the dependence graph, for a node.
int getALAP(SUnit *Node)
Return the latest time an instruction my be scheduled.
Represents a dependence between two instruction.
SUnit * getDst() const
Returns the SUnit to which the edge points (destination node).
Register getReg() const
Returns the register associated with the edge.
void setDistance(unsigned D)
Sets the distance value for the edge.
bool isBarrier() const
Returns true if the edge represents unknown scheduling barrier.
void setLatency(unsigned Latency)
Sets the latency for the edge.
bool isAntiDep() const
Returns true if the edge represents anti dependence.
bool isAssignedRegDep() const
Tests if this is a Data dependence that is associated with a register.
bool isArtificial() const
Returns true if the edge represents an artificial dependence.
bool ignoreDependence(bool IgnoreAnti) const
Returns true for DDG nodes that we ignore when computing the cost functions.
bool isOrderDep() const
Returns true if the edge represents a dependence that is not data, anti or output dependence.
unsigned getLatency() const
Returns the latency value for the edge.
SUnit * getSrc() const
Returns the SUnit from which the edge comes (source node).
unsigned getDistance() const
Returns the distance value for the edge.
bool isOutputDep() const
Returns true if the edge represents output dependence.
SwingSchedulerDDGEdge(SUnit *PredOrSucc, const SDep &Dep, bool IsSucc)
Creates an edge corresponding to an edge represented by PredOrSucc and Dep in the original DAG.
Represents dependencies between instructions.
const EdgesType & getInEdges(const SUnit *SU) const
const EdgesType & getOutEdges(const SUnit *SU) const
Object returned by analyzeLoopForPipelining.
TargetInstrInfo - Interface to description of machine instruction set.
TargetSubtargetInfo - Generic base class for all target subtargets.
This class implements an extremely fast bulk output stream that can only output to a stream.
std::set< NodeId > NodeSet
This is an optimization pass for GlobalISel generic memory operations.
void initializeMachinePipelinerPass(PassRegistry &)
cl::opt< bool > SwpEnableCopyToPhi
static const int DefaultProcResSize
cl::opt< int > SwpForceIssueWidth
A command line argument to force pipeliner to use specified issue width.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Summarize the scheduling resources required for an instruction of a particular scheduling class.
Machine model for scheduling, bundling, and heuristics.
Cache the target analysis information about the loop.
MachineInstr * LoopInductionVar
SmallVector< MachineOperand, 4 > BrCond
MachineInstr * LoopCompare
std::unique_ptr< TargetInstrInfo::PipelinerLoopInfo > LoopPipelinerInfo