LLVM: lib/Target/RISCV/RISCVTargetTransformInfo.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
18#include "llvm/IR/IntrinsicsRISCV.h"
20#include
21#include
22using namespace llvm;
24
25#define DEBUG_TYPE "riscvtti"
26
28 "riscv-v-register-bit-width-lmul",
30 "The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
31 "by autovectorized code. Fractional LMULs are not supported."),
33
35 "riscv-v-slp-max-vf",
37 "Overrides result used for getMaximumVF query which is used "
38 "exclusively by SLP vectorizer."),
40
43 cl::desc("Set the lower bound of a trip count to decide on "
44 "vectorization while tail-folding."),
46
50
53 size_t NumInstr = OpCodes.size();
55 return NumInstr;
58 return LMULCost * NumInstr;
60 for (auto Op : OpCodes) {
61 switch (Op) {
62 case RISCV::VRGATHER_VI:
64 break;
65 case RISCV::VRGATHER_VV:
67 break;
68 case RISCV::VSLIDEUP_VI:
69 case RISCV::VSLIDEDOWN_VI:
71 break;
72 case RISCV::VSLIDEUP_VX:
73 case RISCV::VSLIDEDOWN_VX:
75 break;
76 case RISCV::VREDMAX_VS:
77 case RISCV::VREDMIN_VS:
78 case RISCV::VREDMAXU_VS:
79 case RISCV::VREDMINU_VS:
80 case RISCV::VREDSUM_VS:
81 case RISCV::VREDAND_VS:
82 case RISCV::VREDOR_VS:
83 case RISCV::VREDXOR_VS:
84 case RISCV::VFREDMAX_VS:
85 case RISCV::VFREDMIN_VS:
86 case RISCV::VFREDUSUM_VS: {
91 break;
92 }
93 case RISCV::VFREDOSUM_VS: {
98 break;
99 }
100 case RISCV::VMV_X_S:
101 case RISCV::VMV_S_X:
102 case RISCV::VFMV_F_S:
103 case RISCV::VFMV_S_F:
104 case RISCV::VMOR_MM:
105 case RISCV::VMXOR_MM:
106 case RISCV::VMAND_MM:
107 case RISCV::VMANDN_MM:
108 case RISCV::VMNAND_MM:
109 case RISCV::VCPOP_M:
110 case RISCV::VFIRST_M:
112 break;
113 default:
114 Cost += LMULCost;
115 }
116 }
118}
119
124 bool FreeZeroes) {
125 assert(Ty->isIntegerTy() &&
126 "getIntImmCost can only estimate cost of materialising integers");
127
128
129 if (Imm == 0)
131
132
134 false, FreeZeroes);
135}
136
142
143
144
145
147 uint64_t Mask = Imm.getZExtValue();
149 if (!BO || !BO->hasOneUse())
150 return false;
151
152 if (BO->getOpcode() != Instruction::Shl)
153 return false;
154
156 return false;
157
158 unsigned ShAmt = cast(BO->getOperand(1))->getZExtValue();
159
160
163 if (ShAmt == Trailing)
164 return true;
165 }
166
167 return false;
168}
169
170
171
172
173
176 return false;
177
178
180 if (!Cmp || !Cmp->isEquality())
181 return false;
182
183
185 if ()
186 return false;
187
188 uint64_t Mask = Imm.getZExtValue();
189
190
192 return false;
193
194
195 uint64_t CmpC = C->getZExtValue();
196 if ((CmpC & Mask) != CmpC)
197 return false;
198
199
200
203 return NewCmpC >= -2048 && NewCmpC <= 2048;
204}
205
210 assert(Ty->isIntegerTy() &&
211 "getIntImmCost can only estimate cost of materialising integers");
212
213
214 if (Imm == 0)
216
217
218
219 bool Takes12BitImm = false;
220 unsigned ImmArgIdx = ~0U;
221
222 switch (Opcode) {
223 case Instruction::GetElementPtr:
224
225
226
228 case Instruction::Store: {
229
230
231
232
233 if (Idx == 1 || !Inst)
235 true);
236
238 if (!getTLI()->allowsMemoryAccessForAlignment(
242
244 true);
245 }
246 case Instruction::Load:
247
249 case Instruction::And:
250
251 if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
253
254 if (Imm == UINT64_C(0xffffffff) &&
255 ((ST->hasStdExtZba() && ST->isRV64()) || ST->isRV32()))
257
258 if (ST->hasStdExtZbs() && (~Imm).isPowerOf2())
260 if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() &&
263 if (Inst && Idx == 1 && Imm.getBitWidth() == 64 &&
266 Takes12BitImm = true;
267 break;
268 case Instruction::Add:
269 Takes12BitImm = true;
270 break;
271 case Instruction::Or:
272 case Instruction::Xor:
273
274 if (ST->hasStdExtZbs() && Imm.isPowerOf2())
276 Takes12BitImm = true;
277 break;
278 case Instruction::Mul:
279
280 if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2())
282
283 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2())
285
286 Takes12BitImm = true;
287 break;
288 case Instruction::Sub:
289 case Instruction::Shl:
290 case Instruction::LShr:
291 case Instruction::AShr:
292 Takes12BitImm = true;
293 ImmArgIdx = 1;
294 break;
295 default:
296 break;
297 }
298
299 if (Takes12BitImm) {
300
302
303 if (Imm.getSignificantBits() <= 64 &&
306 }
307 }
308
309
311 }
312
313
315}
316
324
326 return ST->hasVInstructions();
327}
328
334
336 unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
340
341
342
343 if (!ST->hasStdExtZvqdotq() || ST->getELen() < 64 ||
344 Opcode != Instruction::Add || !BinOp || *BinOp != Instruction::Mul ||
345 InputTypeA != InputTypeB || !InputTypeA->isIntegerTy(8) ||
348
351
352 return LT.first *
353 getRISCVInstructionCost(RISCV::VQDOT_VV, LT.second, CostKind);
354}
355
357
358
359
360 switch (II->getIntrinsicID()) {
361 default:
362 return false;
363
364 case Intrinsic::vector_reduce_mul:
365 case Intrinsic::vector_reduce_fmul:
366 return true;
367 }
368}
369
371 if (ST->hasVInstructions())
374}
375
377 if (ST->hasVInstructions())
378 if (unsigned MinVLen = ST->getRealMinVLen();
382}
383
386 unsigned LMUL =
388 switch (K) {
393 ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
396 (ST->hasVInstructions() &&
399 : 0);
400 }
401
403}
404
406RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty,
408
409
410
411 return 2 + getMemoryOpCost(Instruction::Load, Ty, DL.getABITypeAlign(Ty),
412 0, CostKind);
413}
414
416 unsigned Size = Mask.size();
418 return false;
419 for (unsigned I = 0; I != Size; ++I) {
420 if (static_cast<unsigned>(Mask[I]) == I)
421 continue;
422 if (Mask[I] != 0)
423 return false;
425 return false;
426 for (unsigned J = I + 1; J != Size; ++J)
427
428 if (static_cast<unsigned>(Mask[J]) != J % I)
429 return false;
430 SubVectorSize = I;
431 return true;
432 }
433
434 return false;
435}
436
446
447
448
449
450
456 "Expected fixed vector type and non-empty mask");
458
459 unsigned NumOfDests = divideCeil(Mask.size(), LegalNumElts);
460
461
462
463 if (NumOfDests <= 1 ||
465 Tp->getElementType()->getPrimitiveSizeInBits() ||
466 LegalNumElts >= Tp->getElementCount().getFixedValue())
468
469 unsigned VecTySize = TTI.getDataLayout().getTypeStoreSize(Tp);
470 unsigned LegalVTSize = LegalVT.getStoreSize();
471
472 unsigned NumOfSrcs = divideCeil(VecTySize, LegalVTSize);
473
475
476 unsigned NormalizedVF = LegalNumElts * std::max(NumOfSrcs, NumOfDests);
477 unsigned NumOfSrcRegs = NormalizedVF / LegalNumElts;
478 unsigned NumOfDestRegs = NormalizedVF / LegalNumElts;
480 assert(NormalizedVF >= Mask.size() &&
481 "Normalized mask expected to be not shorter than original mask.");
482 copy(Mask, NormalizedMask.begin());
486 NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
487 [&](ArrayRef RegMask, unsigned SrcReg, unsigned DestReg) {
489 return;
490 if (!ReusedSingleSrcShuffles.insert(std::make_pair(RegMask, SrcReg))
491 .second)
492 return;
493 Cost += TTI.getShuffleCost(
496 SingleOpTy, RegMask, CostKind, 0, nullptr);
497 },
498 [&](ArrayRef RegMask, unsigned Idx1, unsigned Idx2, bool NewReg) {
499 Cost += TTI.getShuffleCost(
502 SingleOpTy, RegMask, CostKind, 0, nullptr);
503 });
504 return Cost;
505}
506
507
508
509
510
511
512
513
514
515
516
517
518
519
522 std::optional VLen, VectorType *Tp,
525 if (!VLen || Mask.empty())
529 LegalVT = TTI.getTypeLegalizationCost(
531 .second;
532
535 if (NumOfDests <= 1 ||
537 Tp->getElementType()->getPrimitiveSizeInBits() ||
540
541 unsigned VecTySize = TTI.getDataLayout().getTypeStoreSize(Tp);
542 unsigned LegalVTSize = LegalVT.getStoreSize();
543
544 unsigned NumOfSrcs = divideCeil(VecTySize, LegalVTSize);
545
548
549 unsigned E = NumOfDests.getValue();
550 unsigned NormalizedVF =
555 assert(NormalizedVF >= Mask.size() &&
556 "Normalized mask expected to be not shorter than original mask.");
557 copy(Mask, NormalizedMask.begin());
559 int NumShuffles = 0;
562 NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
563 [&](ArrayRef RegMask, unsigned SrcReg, unsigned DestReg) {
565 return;
566 if (!ReusedSingleSrcShuffles.insert(std::make_pair(RegMask, SrcReg))
567 .second)
568 return;
569 ++NumShuffles;
571 SingleOpTy, RegMask, CostKind, 0, nullptr);
572 },
573 [&](ArrayRef RegMask, unsigned Idx1, unsigned Idx2, bool NewReg) {
575 SingleOpTy, RegMask, CostKind, 0, nullptr);
576 NumShuffles += 2;
577 });
578
579
580
581
582 if ((NumOfDestRegs > 2 && NumShuffles <= static_cast<int>(NumOfDestRegs)) ||
583 (NumOfDestRegs <= 2 && NumShuffles < 4))
584 return Cost;
586}
587
591
594
597
598 if (.second.isFixedLengthVector())
600
601
602
603 if (LT.first != 1)
605
606 auto GetSlideOpcode = [&](int SlideAmt) {
607 assert(SlideAmt != 0);
608 bool IsVI = isUInt<5>(std::abs(SlideAmt));
609 if (SlideAmt < 0)
610 return IsVI ? RISCV::VSLIDEDOWN_VI : RISCV::VSLIDEDOWN_VX;
611 return IsVI ? RISCV::VSLIDEUP_VI : RISCV::VSLIDEUP_VX;
612 };
613
614 std::array<std::pair<int, int>, 2> SrcInfo;
617
618 if (SrcInfo[1].second == 0)
619 std::swap(SrcInfo[0], SrcInfo[1]);
620
622 if (SrcInfo[0].second != 0) {
623 unsigned Opcode = GetSlideOpcode(SrcInfo[0].second);
624 FirstSlideCost = getRISCVInstructionCost(Opcode, LT.second, CostKind);
625 }
626
627 if (SrcInfo[1].first == -1)
628 return FirstSlideCost;
629
631 if (SrcInfo[1].second != 0) {
632 unsigned Opcode = GetSlideOpcode(SrcInfo[1].second);
633 SecondSlideCost = getRISCVInstructionCost(Opcode, LT.second, CostKind);
634 } else {
635 SecondSlideCost =
636 getRISCVInstructionCost(RISCV::VMERGE_VVM, LT.second, CostKind);
637 }
638
643 return FirstSlideCost + SecondSlideCost + MaskCost;
644}
645
654 "Expected the Mask to match the return size if given");
656 "Expected the same scalar types");
657
660
661
662
663
665 FVTp && ST->hasVInstructions() && LT.second.isFixedLengthVector()) {
667 *this, LT.second, ST->getRealVLen(),
669 if (VRegSplittingCost.isValid())
670 return VRegSplittingCost;
671 switch (Kind) {
672 default:
673 break;
675 if (Mask.size() >= 2) {
676 MVT EltTp = LT.second.getVectorElementType();
677
678
679
681
682
683
684
685
687 return 2 * LT.first * TLI->getLMULCost(LT.second);
688
689 if (Mask[0] == 0 || Mask[0] == 1) {
690 auto DeinterleaveMask = createStrideMask(Mask[0], 2, Mask.size());
691
692
693 if (equal(DeinterleaveMask, Mask))
694 return LT.first * getRISCVInstructionCost(RISCV::VNSRL_WI,
696 }
697 }
698 int SubVectorSize;
699 if (LT.second.getScalarSizeInBits() != 1 &&
702 unsigned NumSlides = Log2_32(Mask.size() / SubVectorSize);
703
704 for (unsigned I = 0; I != NumSlides; ++I) {
705 unsigned InsertIndex = SubVectorSize * (1 << I);
710 std::pair<InstructionCost, MVT> DestLT =
712
713
714
715 Cost += DestLT.first * TLI->getLMULCost(DestLT.second);
717 CostKind, InsertIndex, SubTp);
718 }
720 }
721 }
722
725 return SlideCost;
726
727
728
729 if (LT.first == 1 && (LT.second.getScalarSizeInBits() != 8 ||
730 LT.second.getVectorNumElements() <= 256)) {
734 return IndexCost +
735 getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second, CostKind);
736 }
737 break;
738 }
741
744 return SlideCost;
745
746
747
748
749 if (LT.first == 1 && (LT.second.getScalarSizeInBits() != 8 ||
750 LT.second.getVectorNumElements() <= 256)) {
751 auto &C = SrcTy->getContext();
752 auto EC = SrcTy->getElementCount();
757 return 2 * IndexCost +
758 getRISCVInstructionCost({RISCV::VRGATHER_VV, RISCV::VRGATHER_VV},
760 MaskCost;
761 }
762 break;
763 }
764 }
765
767 switch (Kind) {
768 default:
769 return false;
773 return true;
774 }
775 };
776
777 if (!Mask.empty() && LT.first.isValid() && LT.first != 1 &&
782 return SplitCost;
783 }
784 }
785
786
787 switch (Kind) {
788 default:
789
790
791
792 break;
794
795 if (Index == 0)
797
798
799
800
801
802
803
805 SubLT.second.isValid() && SubLT.second.isFixedLengthVector()) {
806 if (std::optional VLen = ST->getRealVLen();
807 VLen && SubLT.second.getScalarSizeInBits() * Index % *VLen == 0 &&
808 SubLT.second.getSizeInBits() <= *VLen)
810 }
811
812
813
814
815 return LT.first *
816 getRISCVInstructionCost(RISCV::VSLIDEDOWN_VI, LT.second, CostKind);
818
819
820
822 return LT.first *
823 getRISCVInstructionCost(RISCV::VSLIDEUP_VI, LT.second, CostKind);
825
826
827
828
829
830
831
832
833
834 return LT.first *
835 (1 + getRISCVInstructionCost({RISCV::VMV_S_X, RISCV::VMERGE_VVM},
837 }
840 Instruction::InsertElement);
841 if (LT.second.getScalarSizeInBits() == 1) {
842 if (HasScalar) {
843
844
845
846
847
848 return LT.first *
849 (1 + getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
851 }
852
853
854
855
856
857
858
859
860
861 return LT.first *
862 (1 + getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM,
863 RISCV::VMV_X_S, RISCV::VMV_V_X,
864 RISCV::VMSNE_VI},
866 }
867
868 if (HasScalar) {
869
870
871 return LT.first *
872 getRISCVInstructionCost(RISCV::VMV_V_X, LT.second, CostKind);
873 }
874
875
876
877 return LT.first *
878 getRISCVInstructionCost(RISCV::VRGATHER_VI, LT.second, CostKind);
879 }
881
882
883
884 unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX};
885 if (Index >= 0 && Index < 32)
886 Opcodes[0] = RISCV::VSLIDEDOWN_VI;
887 else if (Index < 0 && Index > -32)
888 Opcodes[1] = RISCV::VSLIDEUP_VI;
889 return LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind);
890 }
892
893 if (!LT.second.isVector())
895
896
897
898
899 if (SrcTy->getElementType()->isIntegerTy(1)) {
906 nullptr) +
909 }
910
911 MVT ContainerVT = LT.second;
912 if (LT.second.isFixedLengthVector())
913 ContainerVT = TLI->getContainerForFixedLengthVector(LT.second);
915 if (ContainerVT.bitsLE(M1VT)) {
916
917
918
919
920
921
922
923
925 if (LT.second.isFixedLengthVector())
926
927 LenCost = isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1;
928 unsigned Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX, RISCV::VRGATHER_VV};
929 if (LT.second.isFixedLengthVector() &&
930 isInt<5>(LT.second.getVectorNumElements() - 1))
931 Opcodes[1] = RISCV::VRSUB_VI;
933 getRISCVInstructionCost(Opcodes, LT.second, CostKind);
934 return LT.first * (LenCost + GatherCost);
935 }
936
937
938
939
940
941 unsigned M1Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX};
943 getRISCVInstructionCost(M1Opcodes, M1VT, CostKind) + 3;
944 unsigned Ratio =
947 getRISCVInstructionCost({RISCV::VRGATHER_VV}, M1VT, CostKind) * Ratio;
948 InstructionCost SlideCost = !LT.second.isFixedLengthVector() ? 0 :
949 getRISCVInstructionCost({RISCV::VSLIDEDOWN_VX}, LT.second, CostKind);
950 return FixedCost + LT.first * (GatherCost + SlideCost);
951 }
952 }
954 SubTp);
955}
956
964
966 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
971
972
973
974
976 return 1;
977 }
978
979
980
981
982
984 Ty, DemandedElts, Insert, Extract, CostKind);
986 if (Insert && !Extract && LT.first.isValid() && LT.second.isVector()) {
987 if (Ty->getScalarSizeInBits() == 1) {
988 auto *WideVecTy = cast(Ty->getWithNewBitWidth(8));
989
990
995 }
996
997 assert(LT.second.isFixedLengthVector());
998 MVT ContainerVT = TLI->getContainerForFixedLengthVector(LT.second);
1002 getRISCVInstructionCost(RISCV::VSLIDE1DOWN_VX, LT.second, CostKind);
1003 if (BV < Cost)
1005 }
1006 }
1007 return Cost;
1008}
1009
1015 switch (MICA.getID()) {
1016 case Intrinsic::vp_load_ff: {
1017 EVT DataTypeVT = TLI->getValueType(DL, DataTy);
1018 if (!TLI->isLegalFirstFaultLoad(DataTypeVT, Alignment))
1020
1024 }
1025 case Intrinsic::experimental_vp_strided_load:
1026 case Intrinsic::experimental_vp_strided_store:
1028 case Intrinsic::masked_compressstore:
1029 case Intrinsic::masked_expandload:
1031 case Intrinsic::vp_scatter:
1032 case Intrinsic::vp_gather:
1033 case Intrinsic::masked_scatter:
1034 case Intrinsic::masked_gather:
1036 case Intrinsic::vp_load:
1037 case Intrinsic::vp_store:
1038 case Intrinsic::masked_load:
1039 case Intrinsic::masked_store:
1041 }
1043}
1044
1048 unsigned Opcode = MICA.getID() == Intrinsic::masked_load ? Instruction::Load
1049 : Instruction::Store;
1053
1057
1059}
1060
1064 bool UseMaskForCond, bool UseMaskForGaps) const {
1065
1066
1067
1068
1069
1070 if (!UseMaskForGaps && Factor <= TLI->getMaxSupportedInterleaveFactor()) {
1073
1074 if (LT.second.isVector()) {
1075 auto *SubVecTy =
1077 VTy->getElementCount().divideCoefficientBy(Factor));
1078 if (VTy->getElementCount().isKnownMultipleOf(Factor) &&
1079 TLI->isLegalInterleavedAccessType(SubVecTy, Factor, Alignment,
1081
1082
1083
1084 if (ST->hasOptimizedSegmentLoadStore(Factor)) {
1087 MVT SubVecVT = getTLI()->getValueType(DL, SubVecTy).getSimpleVT();
1088 Cost += Factor * TLI->getLMULCost(SubVecVT);
1089 return LT.first * Cost;
1090 }
1091
1092
1093
1095 getMemoryOpCost(Opcode, VTy->getElementType(), Alignment, 0,
1096 CostKind, {TTI::OK_AnyValue, TTI::OP_None});
1097 unsigned NumLoads = getEstimatedVLFor(VTy);
1098 return NumLoads * MemOpCost;
1099 }
1100 }
1101 }
1102
1103
1104
1107
1111 unsigned VF = FVTy->getNumElements() / Factor;
1112
1113
1114
1115
1116
1117
1118 if (Opcode == Instruction::Load) {
1120 for (unsigned Index : Indices) {
1124 Mask.resize(VF * Factor, -1);
1127 Mask, CostKind, 0, nullptr, {});
1128 Cost += ShuffleCost;
1129 }
1130 return Cost;
1131 }
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143 if (Factor != 2)
1146 UseMaskForCond, UseMaskForGaps);
1147
1148 assert(Opcode == Instruction::Store && "Opcode must be a store");
1149
1150
1155 return MemCost + ShuffleCost;
1156}
1157
1161
1162 bool IsLoad = MICA.getID() == Intrinsic::masked_gather ||
1163 MICA.getID() == Intrinsic::vp_gather;
1164 unsigned Opcode = IsLoad ? Instruction::Load : Instruction::Store;
1170
1171 if ((Opcode == Instruction::Load &&
1173 (Opcode == Instruction::Store &&
1176
1177
1178
1179
1183 {TTI::OK_AnyValue, TTI::OP_None}, I);
1184 unsigned NumLoads = getEstimatedVLFor(&VTy);
1185 return NumLoads * MemOpCost;
1186}
1187
1191 unsigned Opcode = MICA.getID() == Intrinsic::masked_expandload
1192 ? Instruction::Load
1193 : Instruction::Store;
1197 bool IsLegal = (Opcode == Instruction::Store &&
1199 (Opcode == Instruction::Load &&
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217 auto MemOpCost =
1221 if (VariableMask)
1222 Opcodes.push_back(RISCV::VCPOP_M);
1223 if (Opcode == Instruction::Store)
1224 Opcodes.append({RISCV::VCOMPRESS_VM});
1225 else
1226 Opcodes.append({RISCV::VSETIVLI, RISCV::VIOTA_M, RISCV::VRGATHER_VV});
1227 return MemOpCost +
1228 LT.first * getRISCVInstructionCost(Opcodes, LT.second, CostKind);
1229}
1230
1234
1235 unsigned Opcode = MICA.getID() == Intrinsic::experimental_vp_strided_load
1236 ? Instruction::Load
1237 : Instruction::Store;
1238
1242
1245
1248
1249
1250
1251
1255 {TTI::OK_AnyValue, TTI::OP_None}, I);
1256 unsigned NumLoads = getEstimatedVLFor(&VTy);
1257 return NumLoads * MemOpCost;
1258}
1259
1262
1263
1264
1267 for (auto *Ty : Tys) {
1268 if (!Ty->isVectorTy())
1269 continue;
1270 Align A = DL.getPrefTypeAlign(Ty);
1273 }
1274 return Cost;
1275}
1276
1277
1278
1279
1280
1282 {Intrinsic::floor, MVT::f32, 9},
1283 {Intrinsic::floor, MVT::f64, 9},
1284 {Intrinsic::ceil, MVT::f32, 9},
1285 {Intrinsic::ceil, MVT::f64, 9},
1286 {Intrinsic::trunc, MVT::f32, 7},
1287 {Intrinsic::trunc, MVT::f64, 7},
1288 {Intrinsic::round, MVT::f32, 9},
1289 {Intrinsic::round, MVT::f64, 9},
1290 {Intrinsic::roundeven, MVT::f32, 9},
1291 {Intrinsic::roundeven, MVT::f64, 9},
1292 {Intrinsic::rint, MVT::f32, 7},
1293 {Intrinsic::rint, MVT::f64, 7},
1294 {Intrinsic::nearbyint, MVT::f32, 9},
1295 {Intrinsic::nearbyint, MVT::f64, 9},
1296 {Intrinsic::bswap, MVT::i16, 3},
1297 {Intrinsic::bswap, MVT::i32, 12},
1298 {Intrinsic::bswap, MVT::i64, 31},
1299 {Intrinsic::vp_bswap, MVT::i16, 3},
1300 {Intrinsic::vp_bswap, MVT::i32, 12},
1301 {Intrinsic::vp_bswap, MVT::i64, 31},
1302 {Intrinsic::vp_fshl, MVT::i8, 7},
1303 {Intrinsic::vp_fshl, MVT::i16, 7},
1304 {Intrinsic::vp_fshl, MVT::i32, 7},
1305 {Intrinsic::vp_fshl, MVT::i64, 7},
1306 {Intrinsic::vp_fshr, MVT::i8, 7},
1307 {Intrinsic::vp_fshr, MVT::i16, 7},
1308 {Intrinsic::vp_fshr, MVT::i32, 7},
1309 {Intrinsic::vp_fshr, MVT::i64, 7},
1310 {Intrinsic::bitreverse, MVT::i8, 17},
1311 {Intrinsic::bitreverse, MVT::i16, 24},
1312 {Intrinsic::bitreverse, MVT::i32, 33},
1313 {Intrinsic::bitreverse, MVT::i64, 52},
1314 {Intrinsic::vp_bitreverse, MVT::i8, 17},
1315 {Intrinsic::vp_bitreverse, MVT::i16, 24},
1316 {Intrinsic::vp_bitreverse, MVT::i32, 33},
1317 {Intrinsic::vp_bitreverse, MVT::i64, 52},
1318 {Intrinsic::ctpop, MVT::i8, 12},
1319 {Intrinsic::ctpop, MVT::i16, 19},
1320 {Intrinsic::ctpop, MVT::i32, 20},
1321 {Intrinsic::ctpop, MVT::i64, 21},
1322 {Intrinsic::ctlz, MVT::i8, 19},
1323 {Intrinsic::ctlz, MVT::i16, 28},
1324 {Intrinsic::ctlz, MVT::i32, 31},
1325 {Intrinsic::ctlz, MVT::i64, 35},
1326 {Intrinsic::cttz, MVT::i8, 16},
1327 {Intrinsic::cttz, MVT::i16, 23},
1328 {Intrinsic::cttz, MVT::i32, 24},
1329 {Intrinsic::cttz, MVT::i64, 25},
1330 {Intrinsic::vp_ctpop, MVT::i8, 12},
1331 {Intrinsic::vp_ctpop, MVT::i16, 19},
1332 {Intrinsic::vp_ctpop, MVT::i32, 20},
1333 {Intrinsic::vp_ctpop, MVT::i64, 21},
1334 {Intrinsic::vp_ctlz, MVT::i8, 19},
1335 {Intrinsic::vp_ctlz, MVT::i16, 28},
1336 {Intrinsic::vp_ctlz, MVT::i32, 31},
1337 {Intrinsic::vp_ctlz, MVT::i64, 35},
1338 {Intrinsic::vp_cttz, MVT::i8, 16},
1339 {Intrinsic::vp_cttz, MVT::i16, 23},
1340 {Intrinsic::vp_cttz, MVT::i32, 24},
1341 {Intrinsic::vp_cttz, MVT::i64, 25},
1342};
1343
1348 switch (ICA.getID()) {
1349 case Intrinsic::lrint:
1350 case Intrinsic::llrint:
1351 case Intrinsic::lround:
1352 case Intrinsic::llround: {
1356 if (ST->hasVInstructions() && LT.second.isVector()) {
1358 unsigned SrcEltSz = DL.getTypeSizeInBits(SrcTy->getScalarType());
1359 unsigned DstEltSz = DL.getTypeSizeInBits(RetTy->getScalarType());
1360 if (LT.second.getVectorElementType() == MVT::bf16) {
1361 if (!ST->hasVInstructionsBF16Minimal())
1363 if (DstEltSz == 32)
1364 Ops = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFCVT_X_F_V};
1365 else
1366 Ops = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFWCVT_X_F_V};
1367 } else if (LT.second.getVectorElementType() == MVT::f16 &&
1368 !ST->hasVInstructionsF16()) {
1369 if (!ST->hasVInstructionsF16Minimal())
1371 if (DstEltSz == 32)
1372 Ops = {RISCV::VFWCVT_F_F_V, RISCV::VFCVT_X_F_V};
1373 else
1374 Ops = {RISCV::VFWCVT_F_F_V, RISCV::VFWCVT_X_F_V};
1375
1376 } else if (SrcEltSz > DstEltSz) {
1377 Ops = {RISCV::VFNCVT_X_F_W};
1378 } else if (SrcEltSz < DstEltSz) {
1379 Ops = {RISCV::VFWCVT_X_F_V};
1380 } else {
1381 Ops = {RISCV::VFCVT_X_F_V};
1382 }
1383
1384
1385
1386 if (SrcEltSz > DstEltSz)
1387 return SrcLT.first *
1388 getRISCVInstructionCost(Ops, SrcLT.second, CostKind);
1389 return LT.first * getRISCVInstructionCost(Ops, LT.second, CostKind);
1390 }
1391 break;
1392 }
1393 case Intrinsic::ceil:
1394 case Intrinsic:🤣
1395 case Intrinsic::trunc:
1396 case Intrinsic::rint:
1397 case Intrinsic::round:
1398 case Intrinsic::roundeven: {
1399
1401 if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second))
1402 return LT.first * 8;
1403 break;
1404 }
1405 case Intrinsic::umin:
1406 case Intrinsic::umax:
1407 case Intrinsic::smin:
1408 case Intrinsic::smax: {
1410 if (LT.second.isScalarInteger() && ST->hasStdExtZbb())
1411 return LT.first;
1412
1413 if (ST->hasVInstructions() && LT.second.isVector()) {
1414 unsigned Op;
1415 switch (ICA.getID()) {
1416 case Intrinsic::umin:
1417 Op = RISCV::VMINU_VV;
1418 break;
1419 case Intrinsic::umax:
1420 Op = RISCV::VMAXU_VV;
1421 break;
1422 case Intrinsic::smin:
1423 Op = RISCV::VMIN_VV;
1424 break;
1425 case Intrinsic::smax:
1426 Op = RISCV::VMAX_VV;
1427 break;
1428 }
1429 return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
1430 }
1431 break;
1432 }
1433 case Intrinsic::sadd_sat:
1434 case Intrinsic::ssub_sat:
1435 case Intrinsic::uadd_sat:
1436 case Intrinsic::usub_sat: {
1438 if (ST->hasVInstructions() && LT.second.isVector()) {
1439 unsigned Op;
1440 switch (ICA.getID()) {
1441 case Intrinsic::sadd_sat:
1442 Op = RISCV::VSADD_VV;
1443 break;
1444 case Intrinsic::ssub_sat:
1445 Op = RISCV::VSSUBU_VV;
1446 break;
1447 case Intrinsic::uadd_sat:
1448 Op = RISCV::VSADDU_VV;
1449 break;
1450 case Intrinsic::usub_sat:
1451 Op = RISCV::VSSUBU_VV;
1452 break;
1453 }
1454 return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
1455 }
1456 break;
1457 }
1458 case Intrinsic::fma:
1459 case Intrinsic::fmuladd: {
1460
1462 if (ST->hasVInstructions() && LT.second.isVector())
1463 return LT.first *
1464 getRISCVInstructionCost(RISCV::VFMADD_VV, LT.second, CostKind);
1465 break;
1466 }
1467 case Intrinsic::fabs: {
1469 if (ST->hasVInstructions() && LT.second.isVector()) {
1470
1471
1472
1473
1474
1475 if (LT.second.getVectorElementType() == MVT::bf16 ||
1476 (LT.second.getVectorElementType() == MVT::f16 &&
1477 !ST->hasVInstructionsF16()))
1478 return LT.first * getRISCVInstructionCost(RISCV::VAND_VX, LT.second,
1480 2;
1481 else
1482 return LT.first *
1483 getRISCVInstructionCost(RISCV::VFSGNJX_VV, LT.second, CostKind);
1484 }
1485 break;
1486 }
1487 case Intrinsic::sqrt: {
1489 if (ST->hasVInstructions() && LT.second.isVector()) {
1492 MVT ConvType = LT.second;
1493 MVT FsqrtType = LT.second;
1494
1495
1496 if (LT.second.getVectorElementType() == MVT::bf16) {
1497 if (LT.second == MVT::nxv32bf16) {
1498 ConvOp = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFWCVTBF16_F_F_V,
1499 RISCV::VFNCVTBF16_F_F_W, RISCV::VFNCVTBF16_F_F_W};
1500 FsqrtOp = {RISCV::VFSQRT_V, RISCV::VFSQRT_V};
1501 ConvType = MVT::nxv16f16;
1502 FsqrtType = MVT::nxv16f32;
1503 } else {
1504 ConvOp = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFNCVTBF16_F_F_W};
1505 FsqrtOp = {RISCV::VFSQRT_V};
1506 FsqrtType = TLI->getTypeToPromoteTo(ISD::FSQRT, FsqrtType);
1507 }
1508 } else if (LT.second.getVectorElementType() == MVT::f16 &&
1509 !ST->hasVInstructionsF16()) {
1510 if (LT.second == MVT::nxv32f16) {
1511 ConvOp = {RISCV::VFWCVT_F_F_V, RISCV::VFWCVT_F_F_V,
1512 RISCV::VFNCVT_F_F_W, RISCV::VFNCVT_F_F_W};
1513 FsqrtOp = {RISCV::VFSQRT_V, RISCV::VFSQRT_V};
1514 ConvType = MVT::nxv16f16;
1515 FsqrtType = MVT::nxv16f32;
1516 } else {
1517 ConvOp = {RISCV::VFWCVT_F_F_V, RISCV::VFNCVT_F_F_W};
1518 FsqrtOp = {RISCV::VFSQRT_V};
1519 FsqrtType = TLI->getTypeToPromoteTo(ISD::FSQRT, FsqrtType);
1520 }
1521 } else {
1522 FsqrtOp = {RISCV::VFSQRT_V};
1523 }
1524
1525 return LT.first * (getRISCVInstructionCost(FsqrtOp, FsqrtType, CostKind) +
1526 getRISCVInstructionCost(ConvOp, ConvType, CostKind));
1527 }
1528 break;
1529 }
1530 case Intrinsic::cttz:
1531 case Intrinsic::ctlz:
1532 case Intrinsic::ctpop: {
1534 if (ST->hasStdExtZvbb() && LT.second.isVector()) {
1535 unsigned Op;
1536 switch (ICA.getID()) {
1537 case Intrinsic::cttz:
1538 Op = RISCV::VCTZ_V;
1539 break;
1540 case Intrinsic::ctlz:
1541 Op = RISCV::VCLZ_V;
1542 break;
1543 case Intrinsic::ctpop:
1544 Op = RISCV::VCPOP_V;
1545 break;
1546 }
1547 return LT.first * getRISCVInstructionCost(Op, LT.second, CostKind);
1548 }
1549 break;
1550 }
1551 case Intrinsic::abs: {
1553 if (ST->hasVInstructions() && LT.second.isVector()) {
1554
1555
1556 return LT.first *
1557 getRISCVInstructionCost({RISCV::VRSUB_VI, RISCV::VMAX_VV},
1559 }
1560 break;
1561 }
1562 case Intrinsic::fshl:
1563 case Intrinsic::fshr: {
1565 break;
1566
1567
1568
1569
1570 if ((ST->hasStdExtZbb() || ST->hasStdExtZbkb()) && RetTy->isIntegerTy() &&
1572 (RetTy->getIntegerBitWidth() == 32 ||
1573 RetTy->getIntegerBitWidth() == 64) &&
1574 RetTy->getIntegerBitWidth() <= ST->getXLen()) {
1575 return 1;
1576 }
1577 break;
1578 }
1579 case Intrinsic::get_active_lane_mask: {
1580 if (ST->hasVInstructions()) {
1584
1585
1586
1587
1588 return LT.first *
1589 getRISCVInstructionCost({RISCV::VSADDU_VX, RISCV::VMSLTU_VX},
1591 }
1592 break;
1593 }
1594
1595 case Intrinsic::stepvector: {
1597
1598
1599 if (ST->hasVInstructions())
1600 return getRISCVInstructionCost(RISCV::VID_V, LT.second, CostKind) +
1601 (LT.first - 1) *
1602 getRISCVInstructionCost(RISCV::VADD_VX, LT.second, CostKind);
1603 return 1 + (LT.first - 1);
1604 }
1605 case Intrinsic::experimental_cttz_elts: {
1607 EVT ArgType = TLI->getValueType(DL, ArgTy, true);
1608 if (getTLI()->shouldExpandCttzElements(ArgType))
1609 break;
1612
1613
1614
1622
1623 return Cost;
1624 }
1625 case Intrinsic::experimental_vp_splat: {
1627
1628 if (!ST->hasVInstructions() || LT.second.getScalarType() == MVT::i1)
1630 return LT.first * getRISCVInstructionCost(LT.second.isFloatingPoint()
1631 ? RISCV::VFMV_V_F
1632 : RISCV::VMV_V_X,
1634 }
1635 case Intrinsic::experimental_vp_splice: {
1636
1637
1638
1642 }
1643 case Intrinsic::fptoui_sat:
1644 case Intrinsic::fptosi_sat: {
1646 bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
1648
1651 if (!SrcTy->isVectorTy())
1652 break;
1653
1654 if (!SrcLT.first.isValid() || !DstLT.first.isValid())
1656
1658 getCastInstrCost(IsSigned ? Instruction::FPToSI : Instruction::FPToUI,
1660
1661
1662
1663
1669 return Cost;
1670 }
1671 }
1672
1673 if (ST->hasVInstructions() && RetTy->isVectorTy()) {
1675 LT.second.isVector()) {
1676 MVT EltTy = LT.second.getVectorElementType();
1678 ICA.getID(), EltTy))
1679 return LT.first * Entry->Cost;
1680 }
1681 }
1682
1684}
1685
1688 const SCEV *Ptr,
1690
1691
1692 if (ST->hasVInstructions() && PtrTy->isVectorTy())
1694
1696}
1697
1704 if (!IsVectorType)
1706
1707
1708
1709
1710 if (ST->enablePExtCodeGen() &&
1712 return 1;
1713 }
1714
1715
1716
1717
1718 if (!ST->hasVInstructions() || Src->getScalarSizeInBits() > ST->getELen() ||
1719 Dst->getScalarSizeInBits() > ST->getELen())
1721
1722 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1723 assert(ISD && "Invalid opcode");
1726
1727
1728
1729
1730
1731
1732 switch (ISD) {
1733 default:
1734 break;
1737 if (Src->getScalarSizeInBits() == 1) {
1738
1739
1740
1741
1742 return getRISCVInstructionCost(RISCV::VMV_V_I, DstLT.second, CostKind) +
1743 DstLT.first * getRISCVInstructionCost(RISCV::VMERGE_VIM,
1745 DstLT.first - 1;
1746 }
1747 break;
1749 if (Dst->getScalarSizeInBits() == 1) {
1750
1751
1752
1753
1754
1755 return SrcLT.first *
1756 getRISCVInstructionCost({RISCV::VAND_VI, RISCV::VMSNE_VI},
1758 SrcLT.first - 1;
1759 }
1760 break;
1761 };
1762
1763
1764
1765
1766
1768 if (!SrcLT.second.isVector() || !DstLT.second.isVector() ||
1769 !SrcLT.first.isValid() || !DstLT.first.isValid() ||
1771 SrcLT.second.getSizeInBits()) ||
1773 DstLT.second.getSizeInBits()) ||
1774 SrcLT.first > 1 || DstLT.first > 1)
1776
1777
1778 assert((SrcLT.first == 1) && (DstLT.first == 1) && "Illegal type");
1779
1780 int PowDiff = (int)Log2_32(DstLT.second.getScalarSizeInBits()) -
1781 (int)Log2_32(SrcLT.second.getScalarSizeInBits());
1782 switch (ISD) {
1785 if ((PowDiff < 1) || (PowDiff > 3))
1787 unsigned SExtOp[] = {RISCV::VSEXT_VF2, RISCV::VSEXT_VF4, RISCV::VSEXT_VF8};
1788 unsigned ZExtOp[] = {RISCV::VZEXT_VF2, RISCV::VZEXT_VF4, RISCV::VZEXT_VF8};
1789 unsigned Op =
1791 return getRISCVInstructionCost(Op, DstLT.second, CostKind);
1792 }
1794 case ISD::FP_EXTEND:
1796
1797 unsigned SrcEltSize = SrcLT.second.getScalarSizeInBits();
1798 unsigned DstEltSize = DstLT.second.getScalarSizeInBits();
1799
1801 : (ISD == ISD::FP_EXTEND) ? RISCV::VFWCVT_F_F_V
1802 : RISCV::VFNCVT_F_F_W;
1804 for (; SrcEltSize != DstEltSize;) {
1808 MVT DstMVT = DstLT.second.changeVectorElementType(ElementMVT);
1809 DstEltSize =
1810 (DstEltSize > SrcEltSize) ? DstEltSize >> 1 : DstEltSize << 1;
1811 Cost += getRISCVInstructionCost(Op, DstMVT, CostKind);
1812 }
1813 return Cost;
1814 }
1818 unsigned FCVT = IsSigned ? RISCV::VFCVT_RTZ_X_F_V : RISCV::VFCVT_RTZ_XU_F_V;
1819 unsigned FWCVT =
1820 IsSigned ? RISCV::VFWCVT_RTZ_X_F_V : RISCV::VFWCVT_RTZ_XU_F_V;
1821 unsigned FNCVT =
1822 IsSigned ? RISCV::VFNCVT_RTZ_X_F_W : RISCV::VFNCVT_RTZ_XU_F_W;
1823 unsigned SrcEltSize = Src->getScalarSizeInBits();
1824 unsigned DstEltSize = Dst->getScalarSizeInBits();
1826 if ((SrcEltSize == 16) &&
1827 (!ST->hasVInstructionsF16() || ((DstEltSize / 2) > SrcEltSize))) {
1828
1829
1833 std::pair<InstructionCost, MVT> VecF32LT =
1836 VecF32LT.first * getRISCVInstructionCost(RISCV::VFWCVT_F_F_V,
1839 return Cost;
1840 }
1841 if (DstEltSize == SrcEltSize)
1842 Cost += getRISCVInstructionCost(FCVT, DstLT.second, CostKind);
1843 else if (DstEltSize > SrcEltSize)
1844 Cost += getRISCVInstructionCost(FWCVT, DstLT.second, CostKind);
1845 else {
1846
1847
1849 MVT VecVT = DstLT.second.changeVectorElementType(ElementVT);
1850 Cost += getRISCVInstructionCost(FNCVT, VecVT, CostKind);
1851 if ((SrcEltSize / 2) > DstEltSize) {
1855 }
1856 }
1857 return Cost;
1858 }
1862 unsigned FCVT = IsSigned ? RISCV::VFCVT_F_X_V : RISCV::VFCVT_F_XU_V;
1863 unsigned FWCVT = IsSigned ? RISCV::VFWCVT_F_X_V : RISCV::VFWCVT_F_XU_V;
1864 unsigned FNCVT = IsSigned ? RISCV::VFNCVT_F_X_W : RISCV::VFNCVT_F_XU_W;
1865 unsigned SrcEltSize = Src->getScalarSizeInBits();
1866 unsigned DstEltSize = Dst->getScalarSizeInBits();
1867
1869 if ((DstEltSize == 16) &&
1870 (!ST->hasVInstructionsF16() || ((SrcEltSize / 2) > DstEltSize))) {
1871
1872
1876 std::pair<InstructionCost, MVT> VecF32LT =
1879 Cost += VecF32LT.first * getRISCVInstructionCost(RISCV::VFNCVT_F_F_W,
1881 return Cost;
1882 }
1883
1884 if (DstEltSize == SrcEltSize)
1885 Cost += getRISCVInstructionCost(FCVT, DstLT.second, CostKind);
1886 else if (DstEltSize > SrcEltSize) {
1887 if ((DstEltSize / 2) > SrcEltSize) {
1891 unsigned Op = IsSigned ? Instruction::SExt : Instruction::ZExt;
1893 }
1894 Cost += getRISCVInstructionCost(FWCVT, DstLT.second, CostKind);
1895 } else
1896 Cost += getRISCVInstructionCost(FNCVT, DstLT.second, CostKind);
1897 return Cost;
1898 }
1899 }
1901}
1902
1903unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) const {
1905 const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType());
1906 const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue();
1909 }
1911}
1912
1919
1920
1921 if (Ty->getScalarSizeInBits() > ST->getELen())
1923
1925 if (Ty->getElementType()->isIntegerTy(1)) {
1926
1927
1928
1929 if (IID == Intrinsic::umax || IID == Intrinsic::smin)
1931 else
1933 }
1934
1935 if (IID == Intrinsic::maximum || IID == Intrinsic::minimum) {
1938 switch (IID) {
1939 case Intrinsic::maximum:
1941 Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
1942 } else {
1943 Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMAX_VS,
1944 RISCV::VFMV_F_S};
1945
1946
1947
1951 ExtraCost = 1 +
1955 }
1956 break;
1957
1958 case Intrinsic::minimum:
1960 Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
1961 } else {
1962 Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMIN_VS,
1963 RISCV::VFMV_F_S};
1964
1965
1966
1968 const unsigned EltTyBits = DL.getTypeSizeInBits(DstTy);
1970 ExtraCost = 1 +
1974 }
1975 break;
1976 }
1977 return ExtraCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
1978 }
1979
1980
1981 unsigned SplitOp;
1983 switch (IID) {
1984 default:
1986 case Intrinsic::smax:
1987 SplitOp = RISCV::VMAX_VV;
1988 Opcodes = {RISCV::VREDMAX_VS, RISCV::VMV_X_S};
1989 break;
1990 case Intrinsic::smin:
1991 SplitOp = RISCV::VMIN_VV;
1992 Opcodes = {RISCV::VREDMIN_VS, RISCV::VMV_X_S};
1993 break;
1994 case Intrinsic::umax:
1995 SplitOp = RISCV::VMAXU_VV;
1996 Opcodes = {RISCV::VREDMAXU_VS, RISCV::VMV_X_S};
1997 break;
1998 case Intrinsic::umin:
1999 SplitOp = RISCV::VMINU_VV;
2000 Opcodes = {RISCV::VREDMINU_VS, RISCV::VMV_X_S};
2001 break;
2002 case Intrinsic::maxnum:
2003 SplitOp = RISCV::VFMAX_VV;
2004 Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
2005 break;
2006 case Intrinsic::minnum:
2007 SplitOp = RISCV::VFMIN_VV;
2008 Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
2009 break;
2010 }
2011
2013 (LT.first > 1) ? (LT.first - 1) *
2014 getRISCVInstructionCost(SplitOp, LT.second, CostKind)
2015 : 0;
2016 return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
2017}
2018
2021 std::optional FMF,
2025
2026
2027 if (Ty->getScalarSizeInBits() > ST->getELen())
2029
2030 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2031 assert(ISD && "Invalid opcode");
2032
2036
2038 Type *ElementTy = Ty->getElementType();
2040
2041
2042
2043 if (LT.second == MVT::v1i1)
2044 return getRISCVInstructionCost(RISCV::VFIRST_M, LT.second, CostKind) +
2047
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062 return ((LT.first > 2) ? (LT.first - 2) : 0) *
2063 getRISCVInstructionCost(RISCV::VMAND_MM, LT.second, CostKind) +
2064 getRISCVInstructionCost(RISCV::VMNAND_MM, LT.second, CostKind) +
2065 getRISCVInstructionCost(RISCV::VCPOP_M, LT.second, CostKind) +
2069
2070
2071
2072
2073
2074 return (LT.first - 1) *
2075 getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second, CostKind) +
2076 getRISCVInstructionCost(RISCV::VCPOP_M, LT.second, CostKind) + 1;
2077 } else {
2079
2080
2081
2082
2083
2084 return (LT.first - 1) *
2085 getRISCVInstructionCost(RISCV::VMOR_MM, LT.second, CostKind) +
2086 getRISCVInstructionCost(RISCV::VCPOP_M, LT.second, CostKind) +
2089 }
2090 }
2091
2092
2093
2094
2095 unsigned SplitOp;
2097 switch (ISD) {
2099 SplitOp = RISCV::VADD_VV;
2100 Opcodes = {RISCV::VMV_S_X, RISCV::VREDSUM_VS, RISCV::VMV_X_S};
2101 break;
2103 SplitOp = RISCV::VOR_VV;
2104 Opcodes = {RISCV::VREDOR_VS, RISCV::VMV_X_S};
2105 break;
2107 SplitOp = RISCV::VXOR_VV;
2108 Opcodes = {RISCV::VMV_S_X, RISCV::VREDXOR_VS, RISCV::VMV_X_S};
2109 break;
2111 SplitOp = RISCV::VAND_VV;
2112 Opcodes = {RISCV::VREDAND_VS, RISCV::VMV_X_S};
2113 break;
2115
2116 if ((LT.second.getScalarType() == MVT::f16 && !ST->hasVInstructionsF16()) ||
2117 LT.second.getScalarType() == MVT::bf16)
2120 Opcodes.push_back(RISCV::VFMV_S_F);
2121 for (unsigned i = 0; i < LT.first.getValue(); i++)
2122 Opcodes.push_back(RISCV::VFREDOSUM_VS);
2123 Opcodes.push_back(RISCV::VFMV_F_S);
2124 return getRISCVInstructionCost(Opcodes, LT.second, CostKind);
2125 }
2126 SplitOp = RISCV::VFADD_VV;
2127 Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDUSUM_VS, RISCV::VFMV_F_S};
2128 break;
2129 }
2130
2132 (LT.first > 1) ? (LT.first - 1) *
2133 getRISCVInstructionCost(SplitOp, LT.second, CostKind)
2134 : 0;
2135 return SplitCost + getRISCVInstructionCost(Opcodes, LT.second, CostKind);
2136}
2137
2139 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
2144
2145
2149
2150 if (Opcode != Instruction::Add && Opcode != Instruction::FAdd)
2153
2155
2156 if (IsUnsigned && Opcode == Instruction::Add &&
2157 LT.second.isFixedLengthVector() && LT.second.getScalarType() == MVT::i1) {
2158
2159
2160 return LT.first *
2161 getRISCVInstructionCost(RISCV::VCPOP_M, LT.second, CostKind);
2162 }
2163
2164 if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits())
2167
2168 return (LT.first - 1) +
2170}
2171
2175 assert(OpInfo.isConstant() && "non constant operand?");
2177
2178
2179
2180 return 0;
2181
2182 if (OpInfo.isUniform())
2183
2184
2185
2186 return 1;
2187
2188 return getConstantPoolLoadCost(Ty, CostKind);
2189}
2190
2192 Align Alignment,
2197 EVT VT = TLI->getValueType(DL, Src, true);
2198
2199 if (VT == MVT::Other)
2202
2204 if (Opcode == Instruction::Store && OpInfo.isConstant())
2206
2208
2212 return Cost;
2213
2214
2215
2216
2217
2219 if (Src->isVectorTy() && LT.second.isVector() &&
2221 LT.second.getSizeInBits()))
2222 return Cost;
2223
2226 }();
2227
2228
2229
2230
2231 if (ST->hasVInstructions() && LT.second.isVector() &&
2233 BaseCost *= TLI->getLMULCost(LT.second);
2234 return Cost + BaseCost;
2235}
2236
2243 Op1Info, Op2Info, I);
2244
2247 Op1Info, Op2Info, I);
2248
2249
2250 if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen())
2252 Op1Info, Op2Info, I);
2253
2254 auto GetConstantMatCost =
2256 if (OpInfo.isUniform())
2257
2258
2259 return 0;
2260
2261 return getConstantPoolLoadCost(ValTy, CostKind);
2262 };
2263
2266 ConstantMatCost += GetConstantMatCost(Op1Info);
2268 ConstantMatCost += GetConstantMatCost(Op2Info);
2269
2271 if (Opcode == Instruction::Select && ValTy->isVectorTy()) {
2273 if (ValTy->getScalarSizeInBits() == 1) {
2274
2275
2276
2277 return ConstantMatCost +
2278 LT.first *
2279 getRISCVInstructionCost(
2280 {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
2282 }
2283
2284 return ConstantMatCost +
2285 LT.first * getRISCVInstructionCost(RISCV::VMERGE_VVM, LT.second,
2287 }
2288
2289 if (ValTy->getScalarSizeInBits() == 1) {
2290
2291
2292
2293
2294
2295 MVT InterimVT = LT.second.changeVectorElementType(MVT::i8);
2296 return ConstantMatCost +
2297 LT.first *
2298 getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
2300 LT.first * getRISCVInstructionCost(
2301 {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
2303 }
2304
2305
2306
2307
2308 return ConstantMatCost +
2309 LT.first * getRISCVInstructionCost(
2310 {RISCV::VMV_V_X, RISCV::VMSNE_VI, RISCV::VMERGE_VVM},
2312 }
2313
2314 if ((Opcode == Instruction::ICmp) && ValTy->isVectorTy() &&
2316
2317
2318 return ConstantMatCost + LT.first * getRISCVInstructionCost(RISCV::VMSLT_VV,
2319 LT.second,
2321 }
2322
2323 if ((Opcode == Instruction::FCmp) && ValTy->isVectorTy() &&
2325
2326
2328 return ConstantMatCost +
2329 getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second, CostKind);
2330
2331
2332
2333
2334
2335 if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) ||
2336 (ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) ||
2337 (ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64()))
2339 Op1Info, Op2Info, I);
2340
2341
2342
2343 switch (VecPred) {
2348 return ConstantMatCost +
2349 LT.first * getRISCVInstructionCost(
2350 {RISCV::VMFLT_VV, RISCV::VMFLT_VV, RISCV::VMOR_MM},
2352
2357 return ConstantMatCost +
2358 LT.first *
2359 getRISCVInstructionCost({RISCV::VMFLT_VV, RISCV::VMNAND_MM},
2361
2368 return ConstantMatCost +
2369 LT.first *
2370 getRISCVInstructionCost(RISCV::VMFLT_VV, LT.second, CostKind);
2371 default:
2372 break;
2373 }
2374 }
2375
2376
2377
2378
2379
2380 if (ST->hasConditionalMoveFusion() && I && isa(I) &&
2381 ValTy->isIntegerTy() && ->user_empty()) {
2382 if (all_of(I->users(), [&](const User *U) {
2383 return match(U, m_Select(m_Specific(I), m_Value(), m_Value())) &&
2384 U->getType()->isIntegerTy() &&
2385 !isa(U->getOperand(1)) &&
2386 !isa(U->getOperand(2));
2387 }))
2388 return 0;
2389 }
2390
2391
2392
2394 Op1Info, Op2Info, I);
2395}
2396
2401 return Opcode == Instruction::PHI ? 0 : 1;
2402
2403 return 0;
2404}
2405
2408 unsigned Index,
2409 const Value *Op0,
2410 const Value *Op1) const {
2412
2413
2414
2415
2417 return 1;
2418 }
2419
2420 if (Opcode != Instruction::ExtractElement &&
2421 Opcode != Instruction::InsertElement)
2423
2424
2426
2427
2428 if (!LT.second.isVector()) {
2430
2431 if (Index != -1U)
2432 return 0;
2433
2434
2435
2436
2437 Type *ElemTy = FixedVecTy->getElementType();
2438 auto NumElems = FixedVecTy->getNumElements();
2439 auto Align = DL.getPrefTypeAlign(ElemTy);
2444 return Opcode == Instruction::ExtractElement
2445 ? StoreCost * NumElems + LoadCost
2446 : (StoreCost + LoadCost) * NumElems + StoreCost;
2447 }
2448
2449
2450 if (LT.second.isScalableVector() && !LT.first.isValid())
2451 return LT.first;
2452
2453
2458 if (Opcode == Instruction::ExtractElement) {
2464 return ExtendCost + ExtractCost;
2465 }
2474 return ExtendCost + InsertCost + TruncCost;
2475 }
2476
2477
2478
2479
2480 unsigned BaseCost = 1;
2481
2482 unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1;
2483
2484 if (Index != -1U) {
2485
2486
2487 if (LT.second.isFixedLengthVector()) {
2488 unsigned Width = LT.second.getVectorNumElements();
2489 Index = Index % Width;
2490 }
2491
2492
2493
2494 if (auto VLEN = ST->getRealVLen()) {
2495 unsigned EltSize = LT.second.getScalarSizeInBits();
2496 unsigned M1Max = *VLEN / EltSize;
2497 Index = Index % M1Max;
2498 }
2499
2500 if (Index == 0)
2501
2502 SlideCost = 0;
2503 else if (ST->hasVendorXRivosVisni() && isUInt<5>(Index) &&
2505 SlideCost = 0;
2506 else if (Opcode == Instruction::InsertElement)
2507 SlideCost = 1;
2508 }
2509
2510
2511
2512
2513 if (LT.first > 1 &&
2514 ((Index == -1U) || (Index >= LT.second.getVectorMinNumElements() &&
2515 LT.second.isScalableVector()))) {
2517 Align VecAlign = DL.getPrefTypeAlign(Val);
2518 Align SclAlign = DL.getPrefTypeAlign(ScalarType);
2519
2521
2522
2523 if (Opcode == Instruction::ExtractElement)
2525 getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
2527 IdxCost;
2528
2529
2530
2533 getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
2535 IdxCost;
2536 }
2537
2538
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559 BaseCost = Opcode == Instruction::InsertElement ? 3 : 4;
2560 }
2561 return BaseCost + SlideCost;
2562}
2563
2567 unsigned Index) const {
2570 Index);
2571
2572
2573
2574
2576 assert(Index < EC.getKnownMinValue() && "Unexpected reverse index");
2578 EC.getKnownMinValue() - 1 - Index, nullptr,
2579 nullptr);
2580}
2581
2586
2587
2590 Args, CxtI);
2591
2594 Args, CxtI);
2595
2596
2597 if (isa(Ty) && Ty->getScalarSizeInBits() > ST->getELen())
2599 Args, CxtI);
2600
2601
2603
2604
2605 if (!LT.second.isVector())
2607 Args, CxtI);
2608
2609
2610
2611 unsigned ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
2613 if ((LT.second.getVectorElementType() == MVT::f16 ||
2614 LT.second.getVectorElementType() == MVT::bf16) &&
2615 TLI->getOperationAction(ISDOpcode, LT.second) ==
2617 MVT PromotedVT = TLI->getTypeToPromoteTo(ISDOpcode, LT.second);
2620
2621 CastCost += LT.first * Args.size() *
2624
2625 CastCost +=
2626 LT.first * getCastInstrCost(Instruction::FPTrunc, LegalTy, PromotedTy,
2628
2629 LT.second = PromotedVT;
2630 }
2631
2632 auto getConstantMatCost =
2634 if (OpInfo.isUniform() && canSplatOperand(Opcode, Operand))
2635
2636
2637
2638
2639
2640 return 0;
2641
2642 return getConstantPoolLoadCost(Ty, CostKind);
2643 };
2644
2645
2648 ConstantMatCost += getConstantMatCost(0, Op1Info);
2650 ConstantMatCost += getConstantMatCost(1, Op2Info);
2651
2652 unsigned Op;
2653 switch (ISDOpcode) {
2656 Op = RISCV::VADD_VV;
2657 break;
2661 Op = RISCV::VSLL_VV;
2662 break;
2666 Op = (Ty->getScalarSizeInBits() == 1) ? RISCV::VMAND_MM : RISCV::VAND_VV;
2667 break;
2671 Op = RISCV::VMUL_VV;
2672 break;
2675 Op = RISCV::VDIV_VV;
2676 break;
2679 Op = RISCV::VREM_VV;
2680 break;
2683 Op = RISCV::VFADD_VV;
2684 break;
2686 Op = RISCV::VFMUL_VV;
2687 break;
2689 Op = RISCV::VFDIV_VV;
2690 break;
2691 case ISD::FNEG:
2692 Op = RISCV::VFSGNJN_VV;
2693 break;
2694 default:
2695
2696
2697 return CastCost + ConstantMatCost +
2699 Args, CxtI);
2700 }
2701
2703
2704
2705
2706 if (Ty->isFPOrFPVectorTy())
2708 return CastCost + ConstantMatCost + LT.first * InstrCost;
2709}
2710
2711
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727 for (auto [I, V] : enumerate(Ptrs)) {
2729 if ()
2730 continue;
2731 if (Info.isSameBase() && V != Base) {
2732 if (GEP->hasAllConstantIndices())
2733 continue;
2734
2735
2736
2737
2738 unsigned Stride = DL.getTypeStoreSize(AccessTy);
2739 if (Info.isUnitStride() &&
2741 nullptr,
2742 Stride * I,
2743 true,
2744 0,
2745 GEP->getType()->getPointerAddressSpace()))
2746 continue;
2748 {TTI::OK_AnyValue, TTI::OP_None},
2749 {TTI::OK_AnyValue, TTI::OP_None}, {});
2750 } else {
2753 Indices, AccessTy, CostKind);
2754 }
2755 }
2756 return Cost;
2757}
2758
2762
2763
2764
2765
2766 if (ST->enableDefaultUnroll())
2768
2769
2770
2772
2773
2776 if (L->getHeader()->getParent()->hasOptSize())
2777 return;
2778
2780 L->getExitingBlocks(ExitingBlocks);
2782 << "Blocks: " << L->getNumBlocks() << "\n"
2783 << "Exit blocks: " << ExitingBlocks.size() << "\n");
2784
2785
2786
2787 if (ExitingBlocks.size() > 2)
2788 return;
2789
2790
2791
2792 if (L->getNumBlocks() > 4)
2793 return;
2794
2795
2796
2797
2800 for (auto *BB : L->getBlocks()) {
2801 for (auto &I : *BB) {
2802
2803
2804
2805 if (IsVectorized && I.getType()->isVectorTy())
2806 return;
2807
2811 continue;
2812 }
2813 return;
2814 }
2815
2819 }
2820 }
2821
2823
2828
2829
2830
2831 if (Cost < 12)
2832 UP.Force = true;
2833}
2834
2839
2845 bool HasMask = false;
2846
2847 auto getSegNum = [](const IntrinsicInst *II, unsigned PtrOperandNo,
2848 bool IsWrite) -> int64_t {
2849 if (auto *TarExtTy =
2851 return TarExtTy->getIntParameter(0);
2852
2853 return 1;
2854 };
2855
2856 switch (IID) {
2857 case Intrinsic::riscv_vle_mask:
2858 case Intrinsic::riscv_vse_mask:
2859 case Intrinsic::riscv_vlseg2_mask:
2860 case Intrinsic::riscv_vlseg3_mask:
2861 case Intrinsic::riscv_vlseg4_mask:
2862 case Intrinsic::riscv_vlseg5_mask:
2863 case Intrinsic::riscv_vlseg6_mask:
2864 case Intrinsic::riscv_vlseg7_mask:
2865 case Intrinsic::riscv_vlseg8_mask:
2866 case Intrinsic::riscv_vsseg2_mask:
2867 case Intrinsic::riscv_vsseg3_mask:
2868 case Intrinsic::riscv_vsseg4_mask:
2869 case Intrinsic::riscv_vsseg5_mask:
2870 case Intrinsic::riscv_vsseg6_mask:
2871 case Intrinsic::riscv_vsseg7_mask:
2872 case Intrinsic::riscv_vsseg8_mask:
2873 HasMask = true;
2874 [[fallthrough]];
2875 case Intrinsic::riscv_vle:
2876 case Intrinsic::riscv_vse:
2877 case Intrinsic::riscv_vlseg2:
2878 case Intrinsic::riscv_vlseg3:
2879 case Intrinsic::riscv_vlseg4:
2880 case Intrinsic::riscv_vlseg5:
2881 case Intrinsic::riscv_vlseg6:
2882 case Intrinsic::riscv_vlseg7:
2883 case Intrinsic::riscv_vlseg8:
2884 case Intrinsic::riscv_vsseg2:
2885 case Intrinsic::riscv_vsseg3:
2886 case Intrinsic::riscv_vsseg4:
2887 case Intrinsic::riscv_vsseg5:
2888 case Intrinsic::riscv_vsseg6:
2889 case Intrinsic::riscv_vsseg7:
2890 case Intrinsic::riscv_vsseg8: {
2891
2892
2893
2894
2895
2896
2897
2898
2899
2902
2904 unsigned SEW =
2906 ->getZExtValue();
2907 Ty = TarExtTy->getTypeParameter(0U);
2911 }
2912 const auto *RVVIInfo = RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IID);
2913 unsigned VLIndex = RVVIInfo->VLOperand;
2914 unsigned PtrOperandNo = VLIndex - 1 - HasMask;
2919 if (HasMask)
2922 unsigned SegNum = getSegNum(Inst, PtrOperandNo, IsWrite);
2923
2924 if (SegNum > 1) {
2925 unsigned ElemSize = Ty->getScalarSizeInBits();
2928 }
2929 Info.InterestingOperands.emplace_back(Inst, PtrOperandNo, IsWrite, Ty,
2930 Alignment, Mask, EVL);
2931 return true;
2932 }
2933 case Intrinsic::riscv_vlse_mask:
2934 case Intrinsic::riscv_vsse_mask:
2935 case Intrinsic::riscv_vlsseg2_mask:
2936 case Intrinsic::riscv_vlsseg3_mask:
2937 case Intrinsic::riscv_vlsseg4_mask:
2938 case Intrinsic::riscv_vlsseg5_mask:
2939 case Intrinsic::riscv_vlsseg6_mask:
2940 case Intrinsic::riscv_vlsseg7_mask:
2941 case Intrinsic::riscv_vlsseg8_mask:
2942 case Intrinsic::riscv_vssseg2_mask:
2943 case Intrinsic::riscv_vssseg3_mask:
2944 case Intrinsic::riscv_vssseg4_mask:
2945 case Intrinsic::riscv_vssseg5_mask:
2946 case Intrinsic::riscv_vssseg6_mask:
2947 case Intrinsic::riscv_vssseg7_mask:
2948 case Intrinsic::riscv_vssseg8_mask:
2949 HasMask = true;
2950 [[fallthrough]];
2951 case Intrinsic::riscv_vlse:
2952 case Intrinsic::riscv_vsse:
2953 case Intrinsic::riscv_vlsseg2:
2954 case Intrinsic::riscv_vlsseg3:
2955 case Intrinsic::riscv_vlsseg4:
2956 case Intrinsic::riscv_vlsseg5:
2957 case Intrinsic::riscv_vlsseg6:
2958 case Intrinsic::riscv_vlsseg7:
2959 case Intrinsic::riscv_vlsseg8:
2960 case Intrinsic::riscv_vssseg2:
2961 case Intrinsic::riscv_vssseg3:
2962 case Intrinsic::riscv_vssseg4:
2963 case Intrinsic::riscv_vssseg5:
2964 case Intrinsic::riscv_vssseg6:
2965 case Intrinsic::riscv_vssseg7:
2966 case Intrinsic::riscv_vssseg8: {
2967
2968
2969
2970
2971
2972
2973
2974
2975
2978
2980 unsigned SEW =
2982 ->getZExtValue();
2983 Ty = TarExtTy->getTypeParameter(0U);
2987 }
2988 const auto *RVVIInfo = RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IID);
2989 unsigned VLIndex = RVVIInfo->VLOperand;
2990 unsigned PtrOperandNo = VLIndex - 2 - HasMask;
2993
2995
2996
2997
2998
3002 Alignment = Align(1);
3003
3006 if (HasMask)
3009 unsigned SegNum = getSegNum(Inst, PtrOperandNo, IsWrite);
3010
3011 if (SegNum > 1) {
3012 unsigned ElemSize = Ty->getScalarSizeInBits();
3015 }
3016 Info.InterestingOperands.emplace_back(Inst, PtrOperandNo, IsWrite, Ty,
3017 Alignment, Mask, EVL, Stride);
3018 return true;
3019 }
3020 case Intrinsic::riscv_vloxei_mask:
3021 case Intrinsic::riscv_vluxei_mask:
3022 case Intrinsic::riscv_vsoxei_mask:
3023 case Intrinsic::riscv_vsuxei_mask:
3024 case Intrinsic::riscv_vloxseg2_mask:
3025 case Intrinsic::riscv_vloxseg3_mask:
3026 case Intrinsic::riscv_vloxseg4_mask:
3027 case Intrinsic::riscv_vloxseg5_mask:
3028 case Intrinsic::riscv_vloxseg6_mask:
3029 case Intrinsic::riscv_vloxseg7_mask:
3030 case Intrinsic::riscv_vloxseg8_mask:
3031 case Intrinsic::riscv_vluxseg2_mask:
3032 case Intrinsic::riscv_vluxseg3_mask:
3033 case Intrinsic::riscv_vluxseg4_mask:
3034 case Intrinsic::riscv_vluxseg5_mask:
3035 case Intrinsic::riscv_vluxseg6_mask:
3036 case Intrinsic::riscv_vluxseg7_mask:
3037 case Intrinsic::riscv_vluxseg8_mask:
3038 case Intrinsic::riscv_vsoxseg2_mask:
3039 case Intrinsic::riscv_vsoxseg3_mask:
3040 case Intrinsic::riscv_vsoxseg4_mask:
3041 case Intrinsic::riscv_vsoxseg5_mask:
3042 case Intrinsic::riscv_vsoxseg6_mask:
3043 case Intrinsic::riscv_vsoxseg7_mask:
3044 case Intrinsic::riscv_vsoxseg8_mask:
3045 case Intrinsic::riscv_vsuxseg2_mask:
3046 case Intrinsic::riscv_vsuxseg3_mask:
3047 case Intrinsic::riscv_vsuxseg4_mask:
3048 case Intrinsic::riscv_vsuxseg5_mask:
3049 case Intrinsic::riscv_vsuxseg6_mask:
3050 case Intrinsic::riscv_vsuxseg7_mask:
3051 case Intrinsic::riscv_vsuxseg8_mask:
3052 HasMask = true;
3053 [[fallthrough]];
3054 case Intrinsic::riscv_vloxei:
3055 case Intrinsic::riscv_vluxei:
3056 case Intrinsic::riscv_vsoxei:
3057 case Intrinsic::riscv_vsuxei:
3058 case Intrinsic::riscv_vloxseg2:
3059 case Intrinsic::riscv_vloxseg3:
3060 case Intrinsic::riscv_vloxseg4:
3061 case Intrinsic::riscv_vloxseg5:
3062 case Intrinsic::riscv_vloxseg6:
3063 case Intrinsic::riscv_vloxseg7:
3064 case Intrinsic::riscv_vloxseg8:
3065 case Intrinsic::riscv_vluxseg2:
3066 case Intrinsic::riscv_vluxseg3:
3067 case Intrinsic::riscv_vluxseg4:
3068 case Intrinsic::riscv_vluxseg5:
3069 case Intrinsic::riscv_vluxseg6:
3070 case Intrinsic::riscv_vluxseg7:
3071 case Intrinsic::riscv_vluxseg8:
3072 case Intrinsic::riscv_vsoxseg2:
3073 case Intrinsic::riscv_vsoxseg3:
3074 case Intrinsic::riscv_vsoxseg4:
3075 case Intrinsic::riscv_vsoxseg5:
3076 case Intrinsic::riscv_vsoxseg6:
3077 case Intrinsic::riscv_vsoxseg7:
3078 case Intrinsic::riscv_vsoxseg8:
3079 case Intrinsic::riscv_vsuxseg2:
3080 case Intrinsic::riscv_vsuxseg3:
3081 case Intrinsic::riscv_vsuxseg4:
3082 case Intrinsic::riscv_vsuxseg5:
3083 case Intrinsic::riscv_vsuxseg6:
3084 case Intrinsic::riscv_vsuxseg7:
3085 case Intrinsic::riscv_vsuxseg8: {
3086
3087
3088
3089
3090
3091
3092
3093
3094
3097
3099 unsigned SEW =
3101 ->getZExtValue();
3102 Ty = TarExtTy->getTypeParameter(0U);
3106 }
3107 const auto *RVVIInfo = RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IID);
3108 unsigned VLIndex = RVVIInfo->VLOperand;
3109 unsigned PtrOperandNo = VLIndex - 2 - HasMask;
3111 if (HasMask) {
3113 } else {
3114
3115
3116
3117
3120 }
3122 unsigned SegNum = getSegNum(Inst, PtrOperandNo, IsWrite);
3123
3124 if (SegNum > 1) {
3125 unsigned ElemSize = Ty->getScalarSizeInBits();
3128 }
3130 Info.InterestingOperands.emplace_back(Inst, PtrOperandNo, IsWrite, Ty,
3131 Align(1), Mask, EVL,
3132 nullptr, OffsetOp);
3133 return true;
3134 }
3135 }
3136 return false;
3137}
3138
3140 if (Ty->isVectorTy()) {
3141
3143 if ((EltTy->isHalfTy() && !ST->hasVInstructionsF16()) ||
3147
3149 if (Size.isScalable() && ST->hasVInstructions())
3151
3152 if (ST->useRVVForFixedLengthVectors())
3154 }
3155
3157}
3158
3160 if (SLPMaxVF.getNumOccurrences())
3162
3163
3164
3165
3166
3167
3170
3171
3172 return std::max(1U, RegWidth.getFixedValue() / ElemWidth);
3173}
3174
3178
3180 return ST->enableUnalignedVectorMem();
3181}
3182
3186 if (ST->hasVendorXCVmem() && !ST->is64Bit())
3188
3190}
3191
3206
3208 Align Alignment) const {
3210 if (!VTy || VTy->isScalableTy())
3211 return false;
3212
3214 return false;
3215
3216
3217
3218 if (VTy->getElementType()->isIntegerTy(8))
3219 if (VTy->getElementCount().getFixedValue() > 256)
3220 return VTy->getPrimitiveSizeInBits() / ST->getRealMinVLen() <
3221 ST->getMaxLMULForFixedLengthVectors();
3222 return true;
3223}
3224
3226 Align Alignment) const {
3228 if (!VTy || VTy->isScalableTy())
3229 return false;
3230
3232 return false;
3233 return true;
3234}
3235
3236
3237
3238
3239
3240
3242 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
3243 bool Considerable = false;
3244 AllowPromotionWithoutCommonHeader = false;
3246 return false;
3247 Type *ConsideredSExtType =
3249 if (I.getType() != ConsideredSExtType)
3250 return false;
3251
3252
3253 for (const User *U : I.users()) {
3255 Considerable = true;
3256
3257
3258
3259 if (GEPInst->getNumOperands() > 2) {
3260 AllowPromotionWithoutCommonHeader = true;
3261 break;
3262 }
3263 }
3264 }
3265 return Considerable;
3266}
3267
3269 switch (Opcode) {
3270 case Instruction::Add:
3271 case Instruction::Sub:
3272 case Instruction::Mul:
3273 case Instruction::And:
3274 case Instruction::Or:
3275 case Instruction::Xor:
3276 case Instruction::FAdd:
3277 case Instruction::FSub:
3278 case Instruction::FMul:
3279 case Instruction::FDiv:
3280 case Instruction::ICmp:
3281 case Instruction::FCmp:
3282 return true;
3283 case Instruction::Shl:
3284 case Instruction::LShr:
3285 case Instruction::AShr:
3286 case Instruction::UDiv:
3287 case Instruction::SDiv:
3288 case Instruction::URem:
3289 case Instruction::SRem:
3290 case Instruction::Select:
3291 return Operand == 1;
3292 default:
3293 return false;
3294 }
3295}
3296
3298 if (->getType()->isVectorTy() || !ST->hasVInstructions())
3299 return false;
3300
3302 return true;
3303
3305 if ()
3306 return false;
3307
3308 switch (II->getIntrinsicID()) {
3309 case Intrinsic::fma:
3310 case Intrinsic::vp_fma:
3311 case Intrinsic::fmuladd:
3312 case Intrinsic::vp_fmuladd:
3313 return Operand == 0 || Operand == 1;
3314 case Intrinsic::vp_shl:
3315 case Intrinsic::vp_lshr:
3316 case Intrinsic::vp_ashr:
3317 case Intrinsic::vp_udiv:
3318 case Intrinsic::vp_sdiv:
3319 case Intrinsic::vp_urem:
3320 case Intrinsic::vp_srem:
3321 case Intrinsic::ssub_sat:
3322 case Intrinsic::vp_ssub_sat:
3323 case Intrinsic::usub_sat:
3324 case Intrinsic::vp_usub_sat:
3325 case Intrinsic::vp_select:
3326 return Operand == 1;
3327
3328 case Intrinsic::vp_add:
3329 case Intrinsic::vp_mul:
3330 case Intrinsic::vp_and:
3331 case Intrinsic::vp_or:
3332 case Intrinsic::vp_xor:
3333 case Intrinsic::vp_fadd:
3334 case Intrinsic::vp_fmul:
3335 case Intrinsic::vp_icmp:
3336 case Intrinsic::vp_fcmp:
3337 case Intrinsic::smin:
3338 case Intrinsic::vp_smin:
3339 case Intrinsic::umin:
3340 case Intrinsic::vp_umin:
3341 case Intrinsic::smax:
3342 case Intrinsic::vp_smax:
3343 case Intrinsic::umax:
3344 case Intrinsic::vp_umax:
3345 case Intrinsic::sadd_sat:
3346 case Intrinsic::vp_sadd_sat:
3347 case Intrinsic::uadd_sat:
3348 case Intrinsic::vp_uadd_sat:
3349
3350 case Intrinsic::vp_sub:
3351 case Intrinsic::vp_fsub:
3352 case Intrinsic::vp_fdiv:
3353 return Operand == 0 || Operand == 1;
3354 default:
3355 return false;
3356 }
3357}
3358
3359
3360
3361
3365
3366 if (I->isBitwiseLogicOp()) {
3367 if (->getType()->isVectorTy()) {
3368 if (ST->hasStdExtZbb() || ST->hasStdExtZbkb()) {
3369 for (auto &Op : I->operands()) {
3370
3373 return true;
3374 }
3375 }
3376 }
3377 } else if (I->getOpcode() == Instruction::And && ST->hasStdExtZvkb()) {
3378 for (auto &Op : I->operands()) {
3379
3382 return true;
3383 }
3384
3390 Ops.push_back(&Not);
3391 Ops.push_back(&InsertElt);
3393 return true;
3394 }
3395 }
3396 }
3397 }
3398
3399 if (->getType()->isVectorTy() || !ST->hasVInstructions())
3400 return false;
3401
3402
3403
3404
3405
3406
3407 if (!ST->sinkSplatOperands())
3408 return false;
3409
3412 continue;
3413
3415
3416 if ( || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
3417 continue;
3418
3419
3422 if (!IsVPSplat &&
3425 continue;
3426
3427
3428 if (cast(Op->getType())->getElementType()->isIntegerTy(1))
3429 continue;
3430
3431
3432
3433 for (Use &U : Op->uses()) {
3436 return false;
3437 }
3438
3439
3440 if (IsVPSplat) {
3442 Ops.push_back(&Op->getOperandUse(0));
3443 } else {
3444 Use *InsertEltUse = &Op->getOperandUse(0);
3447 Ops.push_back(&InsertElt->getOperandUse(1));
3448 Ops.push_back(InsertEltUse);
3449 }
3450 Ops.push_back(&OpIdx.value());
3451 }
3452 return true;
3453}
3454
3458
3459
3460 if (!ST->enableUnalignedScalarMem())
3462
3463 if (!ST->hasStdExtZbb() && !ST->hasStdExtZbkb() && !IsZeroCmp)
3465
3466 Options.AllowOverlappingLoads = true;
3467 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3469 if (ST->is64Bit()) {
3470 Options.LoadSizes = {8, 4, 2, 1};
3471 Options.AllowedTailExpansions = {3, 5, 6};
3472 } else {
3473 Options.LoadSizes = {4, 2, 1};
3474 Options.AllowedTailExpansions = {3};
3475 }
3476
3477 if (IsZeroCmp && ST->hasVInstructions()) {
3478 unsigned VLenB = ST->getRealMinVLen() / 8;
3479
3480
3481 unsigned MinSize = ST->getXLen() / 8 + 1;
3482 unsigned MaxSize = VLenB * ST->getMaxLMULForFixedLengthVectors();
3483 for (unsigned Size = MinSize; Size <= MaxSize; Size++)
3485 }
3487}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file provides a helper that implements much of the TTI interface in terms of the target-independ...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static bool shouldSplit(Instruction *InsertPoint, DenseSet< Value * > &PrevConditionValues, DenseSet< Value * > &ConditionValues, DominatorTree &DT, DenseSet< Instruction * > &Unhoistables)
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
Cost tables and simple lookup functions.
static cl::opt< int > InstrCost("inline-instr-cost", cl::Hidden, cl::init(5), cl::desc("Cost of a single instruction when inlining"))
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static const Function * getCalledFunction(const Value *V)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static InstructionCost costShuffleViaVRegSplitting(const RISCVTTIImpl &TTI, MVT LegalVT, std::optional< unsigned > VLen, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind)
Try to perform better estimation of the permutation.
Definition RISCVTargetTransformInfo.cpp:521
static InstructionCost costShuffleViaSplitting(const RISCVTTIImpl &TTI, MVT LegalVT, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind)
Attempt to approximate the cost of a shuffle which will require splitting during legalization.
Definition RISCVTargetTransformInfo.cpp:451
static bool isRepeatedConcatMask(ArrayRef< int > Mask, int &SubVectorSize)
Definition RISCVTargetTransformInfo.cpp:415
static unsigned isM1OrSmaller(MVT VT)
Definition RISCVTargetTransformInfo.cpp:957
static cl::opt< unsigned > SLPMaxVF("riscv-v-slp-max-vf", cl::desc("Overrides result used for getMaximumVF query which is used " "exclusively by SLP vectorizer."), cl::Hidden)
static cl::opt< unsigned > RVVRegisterWidthLMUL("riscv-v-register-bit-width-lmul", cl::desc("The LMUL to use for getRegisterBitWidth queries. Affects LMUL used " "by autovectorized code. Fractional LMULs are not supported."), cl::init(2), cl::Hidden)
static cl::opt< unsigned > RVVMinTripCount("riscv-v-min-trip-count", cl::desc("Set the lower bound of a trip count to decide on " "vectorization while tail-folding."), cl::init(5), cl::Hidden)
static InstructionCost getIntImmCostImpl(const DataLayout &DL, const RISCVSubtarget *ST, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, bool FreeZeroes)
Definition RISCVTargetTransformInfo.cpp:120
static VectorType * getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST, LLVMContext &C)
Definition RISCVTargetTransformInfo.cpp:437
static const CostTblEntry VectorIntrinsicCostTable[]
Definition RISCVTargetTransformInfo.cpp:1281
static bool canUseShiftPair(Instruction *Inst, const APInt &Imm)
Definition RISCVTargetTransformInfo.cpp:146
static bool canUseShiftCmp(Instruction *Inst, const APInt &Imm)
Definition RISCVTargetTransformInfo.cpp:174
This file defines a TargetTransformInfoImplBase conforming object specific to the RISC-V target machi...
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file describes how to lower LLVM code to machine code.
This pass exposes codegen information to IR-level passes.
Class for arbitrary precision integers.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const override
InstructionCost getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *SrcTy, int &Index, VectorType *&SubTy) const
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr, int64_t ScalableOffset=0) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
std::optional< unsigned > getMaxVScale() const override
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
bool isLegalAddImmediate(int64_t imm) const override
std::optional< unsigned > getVScaleForTuning() const override
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *, const SCEV *, TTI::TargetCostKind) const override
unsigned getRegUsageForType(Type *Ty) const override
InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
static bool isFPPredicate(Predicate P)
static bool isIntPredicate(Predicate P)
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static FixedVectorType * getDoubleElementsVectorType(FixedVectorType *VTy)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static InstructionCost getInvalid(CostType Val=0)
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
const SmallVectorImpl< Type * > & getArgTypes() const
Type * getReturnType() const
const SmallVectorImpl< const Value * > & getArgs() const
Intrinsic::ID getID() const
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
static MVT getFloatingPointVT(unsigned BitWidth)
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT changeVectorElementType(MVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
bool bitsLE(MVT VT) const
Return true if this has no more bits than VT.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
MVT changeTypeToInteger()
Return the type converted to an equivalently sized integer or vector with integer element type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool bitsGT(MVT VT) const
Return true if this has more bits than VT.
bool isFixedLengthVector() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
MVT getVectorElementType() const
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
Information for memory intrinsic cost model.
Align getAlignment() const
unsigned getAddressSpace() const
Type * getDataType() const
bool getVariableMask() const
Intrinsic::ID getID() const
const Instruction * getInst() const
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
Definition RISCVTargetTransformInfo.cpp:2138
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
Definition RISCVTargetTransformInfo.cpp:2397
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
Definition RISCVTargetTransformInfo.cpp:2582
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override
Definition RISCVTargetTransformInfo.cpp:3207
InstructionCost getStridedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
Definition RISCVTargetTransformInfo.cpp:1232
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
Definition RISCVTargetTransformInfo.cpp:318
unsigned getMinTripCountTailFoldingThreshold() const override
Definition RISCVTargetTransformInfo.cpp:3175
TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override
Definition RISCVTargetTransformInfo.cpp:3184
InstructionCost getAddressComputationCost(Type *PTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const override
Definition RISCVTargetTransformInfo.cpp:1687
InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo, TTI::TargetCostKind CostKind) const
Return the cost of materializing an immediate for a value operand of a store instruction.
Definition RISCVTargetTransformInfo.cpp:2173
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const override
Definition RISCVTargetTransformInfo.cpp:2840
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const override
Definition RISCVTargetTransformInfo.cpp:1261
bool hasActiveVectorLength() const override
Definition RISCVTargetTransformInfo.cpp:325
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
Definition RISCVTargetTransformInfo.cpp:1698
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
Definition RISCVTargetTransformInfo.cpp:2237
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
Definition RISCVTargetTransformInfo.cpp:2565
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
Definition RISCVTargetTransformInfo.cpp:2759
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr) const override
Definition RISCVTargetTransformInfo.cpp:206
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
Definition RISCVTargetTransformInfo.cpp:1914
bool canSplatOperand(Instruction *I, int Operand) const
Return true if the (vector) instruction I will be lowered to an instruction with a scalar splat opera...
Definition RISCVTargetTransformInfo.cpp:3297
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const override
Definition RISCVTargetTransformInfo.cpp:3192
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override
unsigned getRegUsageForType(Type *Ty) const override
Definition RISCVTargetTransformInfo.cpp:3139
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
Definition RISCVTargetTransformInfo.cpp:1061
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
Estimate the overhead of scalarizing an instruction.
Definition RISCVTargetTransformInfo.cpp:965
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override
bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override
Definition RISCVTargetTransformInfo.cpp:3225
InstructionCost getGatherScatterOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
Definition RISCVTargetTransformInfo.cpp:1159
InstructionCost getExpandCompressMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
Definition RISCVTargetTransformInfo.cpp:1188
bool preferAlternateOpcodeVectorization() const override
Definition RISCVTargetTransformInfo.cpp:3179
bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const override
Check if sinking I's operands to I's basic block is profitable, because the operands can be folded in...
Definition RISCVTargetTransformInfo.cpp:3362
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
Definition RISCVTargetTransformInfo.cpp:2406
std::optional< unsigned > getMaxVScale() const override
Definition RISCVTargetTransformInfo.cpp:370
bool shouldExpandReduction(const IntrinsicInst *II) const override
Definition RISCVTargetTransformInfo.cpp:356
std::optional< unsigned > getVScaleForTuning() const override
Definition RISCVTargetTransformInfo.cpp:376
InstructionCost getMemIntrinsicInstrCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const override
Get memory intrinsic cost based on arguments.
Definition RISCVTargetTransformInfo.cpp:1011
bool isLegalMaskedGather(Type *DataType, Align Alignment) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
Definition RISCVTargetTransformInfo.cpp:647
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override
Definition RISCVTargetTransformInfo.cpp:3159
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind) const override
Definition RISCVTargetTransformInfo.cpp:2712
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override
Definition RISCVTargetTransformInfo.cpp:3456
InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, TTI::PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const override
Definition RISCVTargetTransformInfo.cpp:335
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpdInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
Definition RISCVTargetTransformInfo.cpp:2191
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
Definition RISCVTargetTransformInfo.cpp:1345
InstructionCost getMaskedMemoryOpCost(const MemIntrinsicCostAttributes &MICA, TTI::TargetCostKind CostKind) const
Definition RISCVTargetTransformInfo.cpp:1046
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
Definition RISCVTargetTransformInfo.cpp:2020
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
Definition RISCVTargetTransformInfo.cpp:385
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
Definition RISCVTargetTransformInfo.cpp:2835
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const override
See if I should be considered for address type promotion.
Definition RISCVTargetTransformInfo.cpp:3241
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
Definition RISCVTargetTransformInfo.cpp:138
TargetTransformInfo::PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override
Definition RISCVTargetTransformInfo.cpp:330
static MVT getM1VT(MVT VT)
Given a vector (either fixed or scalable), return the scalable vector corresponding to a vector regis...
InstructionCost getVRGatherVVCost(MVT VT) const
Return the cost of a vrgather.vv instruction for the type VT.
InstructionCost getVRGatherVICost(MVT VT) const
Return the cost of a vrgather.vi (or vx) instruction for the type VT.
static unsigned computeVLMAX(unsigned VectorBits, unsigned EltSize, unsigned MinSize)
InstructionCost getLMULCost(MVT VT) const
Return the cost of LMUL for linear operations.
InstructionCost getVSlideVICost(MVT VT) const
Return the cost of a vslidedown.vi or vslideup.vi instruction for the type VT.
InstructionCost getVSlideVXCost(MVT VT) const
Return the cost of a vslidedown.vx or vslideup.vx instruction for the type VT.
static RISCVVType::VLMUL getLMUL(MVT VT)
This class represents an analyzed expression in the program.
static LLVM_ABI ScalableVectorType * get(Type *ElementType, unsigned MinNumElts)
The main scalar evolution driver.
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static LLVM_ABI bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
Implements a dense probed hash-table based set with some number of buckets stored inline.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
virtual const DataLayout & getDataLayout() const
virtual TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
virtual bool isLoweredToCall(const Function *F) const
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TTI::TargetCostKind CostKind) const override
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCK_Latency
The latency of instruction.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
PopcntSupportKind
Flags indicating the kind of support for population count.
PartialReductionExtendKind
@ TCC_Free
Expected to fold away in lowering.
@ TCC_Basic
The cost of a typical 'add' instruction.
AddressingModeKind
Which addressing mode Loop Strength Reduction will try to generate.
@ AMK_PostIndexed
Prefer post-indexed addressing mode.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Transpose
Transpose two vectors.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
CastContextHint
Represents a hint about the context in which a cast is used.
@ None
The cast is not used with a load/store of any kind.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
LLVM_ABI Type * getWithNewType(Type *EltTy) const
Given vector type, change the element type, whilst keeping the old number of elements.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator user_begin()
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
@ ADD
Simple integer binary arithmetic operators.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ FADD
Simple binary floating point operators.
@ SIGN_EXTEND
Conversion operators.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
bool match(Val *V, const Pattern &P)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_IntrinsicIntrinsic::fabs(m_Value(X))
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI, bool CompressionCost, bool FreeZeroes)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
const CostTblEntryT< CostType > * CostTableLookup(ArrayRef< CostTblEntryT< CostType > > Tbl, int ISD, MVT Ty)
Find in cost table.
LLVM_ABI bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name)
Returns true if Name is applied to TheLoop and enabled.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast - Return the argument parameter cast to the specified type.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
bool isa(const From &Val)
isa - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
LLVM_ABI bool isMaskedSlidePair(ArrayRef< int > Mask, int NumElts, std::array< std::pair< int, int >, 2 > &SrcInfo)
Does this shuffle mask represent either one slide shuffle or a pair of two slide shuffles,...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
DWARFExpression::Operation Op
CostTblEntryT< unsigned > CostTblEntry
OutputIt copy(R &&Range, OutputIt Out)
decltype(auto) cast(const From &Val)
cast - Return the argument parameter cast to the specified type.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
LLVM_ABI void processShuffleMasks(ArrayRef< int > Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, unsigned NumOfUsedRegs, function_ref< void()> NoInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned)> SingleInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned, bool)> ManyInputsAction)
Splits and processes shuffle mask depending on the number of input and output registers.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Information about a load/store intrinsic defined by the target.
unsigned Insns
TODO: Some of these could be merged.
Returns options for expansion of memcmp. IsZeroCmp is.
Describe known properties for a set of pointers.
Parameters that control the generic loop unrolling transformation.
bool UpperBound
Allow using trip count upper bound to unroll loops.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).