LLVM: lib/CodeGen/RegAllocGreedy.cpp Source File (original) (raw)
1
2
3
4
5
6
7
8
9
10
11
12
13
69#include
70#include
71#include
72#include
73
74using namespace llvm;
75
76#define DEBUG_TYPE "regalloc"
77
78STATISTIC(NumGlobalSplits, "Number of split global live ranges");
79STATISTIC(NumLocalSplits, "Number of split local live ranges");
80STATISTIC(NumEvicted, "Number of interferences evicted");
81
84 cl::desc("Spill mode for splitting live ranges"),
89
92 cl::desc("Last chance recoloring max depth"),
94
97 cl::desc("Last chance recoloring maximum number of considered"
98 " interference at a time"),
100
103 cl::desc("Exhaustive Search for registers bypassing the depth "
104 "and interference cutoffs of last chance recoloring"),
106
108 "enable-deferred-spilling", cl::Hidden,
109 cl::desc("Instead of spilling a variable right away, defer the actual "
110 "code insertion to the end of the allocation. That way the "
111 "allocator might still find a suitable coloring for this "
112 "variable because of other evicted variables."),
114
115
118 cl::desc("Cost for first time use of callee-saved register."),
120
122 "grow-region-complexity-budget",
123 cl::desc("growRegion() does not scale with the number of BB edges, so "
124 "limit its budget and bail out once we reach the limit."),
126
128 "greedy-regclass-priority-trumps-globalness",
129 cl::desc("Change the greedy register allocator's live range priority "
130 "calculation to make the AllocationPriority of the register class "
131 "more important then whether the range is global"),
133
135 "greedy-reverse-local-assignment",
136 cl::desc("Reverse allocation order of local live ranges, such that "
137 "shorter local live ranges will tend to be allocated first"),
139
141 "split-threshold-for-reg-with-hint",
142 cl::desc("The threshold for splitting a virtual register with a hint, in "
143 "percentage"),
145
148
151
153 "Greedy Register Allocator", false, false)
171
172#ifndef NDEBUG
173const char *const RAGreedy::StageName[] = {
174 "RS_New",
175 "RS_Assign",
176 "RS_Split",
177 "RS_Split2",
178 "RS_Spill",
179 "RS_Memory",
180 "RS_Done"
181};
182#endif
183
184
185
186const float Hysteresis = (2007 / 2048.0f);
187
190}
191
194}
195
198
225}
226
227
228
229
230
231bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
236 return true;
237 }
238
239
240
241
243 return false;
244}
245
246void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
248 return;
249
250
254}
255
256void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
257 ExtraInfo->LRE_DidCloneVirtReg(New, Old);
258}
259
261
262 if (!Info.inBounds(Old))
263 return;
264
265
266
267
268
270 Info.grow(New.id());
271 Info[New] = Info[Old];
272}
273
275 SpillerInstance.reset();
276 GlobalCand.clear();
277}
278
280
281void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
282
283
285 assert(Reg.isVirtual() && "Can only enqueue virtual registers");
286
287 auto Stage = ExtraInfo->getOrInitStage(Reg);
288 if (Stage == RS_New) {
290 ExtraInfo->setStage(Reg, Stage);
291 }
292
293 unsigned Ret = PriorityAdvisor->getPriority(*LI);
294
295
296
297 CurQueue.push(std::make_pair(Ret, ~Reg));
298}
299
300unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const {
303 unsigned Prio;
305
307
308
311
312
313
314
315 static unsigned MemOp = 0;
317 } else {
318
319
322 (!ReverseLocalAssignment &&
325 unsigned GlobalBit = 0;
326
327 if (Stage == RS_Assign && !ForceGlobal && !LI.empty() &&
329
330
331
332 if (!ReverseLocalAssignment)
334 else {
335
336
337
339 }
340 } else {
341
342
343
345 GlobalBit = 1;
346 }
347
348
349
350
351
352
353
354
355
356
357
358
359
360 Prio = std::min(Prio, (unsigned)maxUIntN(24));
362
363 if (RegClassPriorityTrumpsGlobalness)
365 else
367
368
369 Prio |= (1u << 31);
370
371
373 Prio |= (1u << 30);
374 }
375
376 return Prio;
377}
378
379unsigned DummyPriorityAdvisor::getPriority(const LiveInterval &LI) const {
380
383}
384
386
388 if (CurQueue.empty())
389 return nullptr;
391 CurQueue.pop();
392 return LI;
393}
394
395
396
397
398
399
405 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
408 if (I.isHint())
409 return *I;
410 else
411 PhysReg = *I;
412 }
413 }
415 return PhysReg;
416
417
418
419
420
422 if (Order.isHint(Hint)) {
423 MCRegister PhysHint = Hint.asMCReg();
425
426 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
427 FixedRegisters)) {
428 evictInterference(VirtReg, PhysHint, NewVRegs);
429 return PhysHint;
430 }
431
432
433 if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order))
434 return 0;
435
436
437
438 SetOfBrokenHints.insert(&VirtReg);
439 }
440
441
443
444
446 return PhysReg;
447
449 << (unsigned)Cost << '\n');
450 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
451 return CheapReg ? CheapReg : PhysReg;
452}
453
454
455
456
457
460 auto HasRegUnitInterference = [&](MCRegUnit Unit) {
461
464 };
465
468 if (Reg == FromReg)
469 continue;
470
472 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
475 return true;
476 }
477 }
478 return false;
479}
480
481
482
483
484void RAGreedy::evictInterference(const LiveInterval &VirtReg,
487
488
489
490 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
491
493 << " interference: Cascade " << Cascade << '\n');
494
495
499
500
501
502
505 }
506
507
509
511 continue;
512
514 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
515 VirtReg.isSpillable() < Intf->isSpillable()) &&
516 "Cannot decrease cascade number, illegal eviction");
517 ExtraInfo->setCascade(Intf->reg(), Cascade);
518 ++NumEvicted;
520 }
521}
522
523
524
527 if (!CSR)
528 return false;
529
531}
532
533std::optional
536 unsigned CostPerUseLimit) const {
537 unsigned OrderLimit = Order.getOrder().size();
538
539 if (CostPerUseLimit < uint8_t(~0u)) {
540
543 if (MinCost >= CostPerUseLimit) {
545 << MinCost << ", no cheaper registers to be found.\n");
546 return std::nullopt;
547 }
548
549
550
551 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
553 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
554 << " regs.\n");
555 }
556 }
557 return OrderLimit;
558}
559
562 if (RegCosts[PhysReg.id()] >= CostPerUseLimit)
563 return false;
564
565
566 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
568 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
570 << '\n');
571 return false;
572 }
573 return true;
574}
575
576
577
578
579
587
588 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
589 VirtReg, Order, CostPerUseLimit, FixedRegisters);
591 evictInterference(VirtReg, BestPhys, NewVRegs);
592 return BestPhys;
593}
594
595
596
597
598
599
600
601
602
603
607
608
609 SplitConstraints.resize(UseBlocks.size());
611 for (unsigned I = 0; I != UseBlocks.size(); ++I) {
614
623
625 continue;
626
627
628 unsigned Ins = 0;
629
630
634 ++Ins;
640 }
641
642
646 SA->getFirstSplitPoint(BC.Number)))
647 return false;
648 }
649
650
652 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
660 }
661 }
662
663
664 while (Ins--)
666 }
667 Cost = StaticCost;
668
669
670
673}
674
675
676
679 const unsigned GroupSize = 8;
681 unsigned TBS[GroupSize];
683
686
688 assert(T < GroupSize && "Array overflow");
690 if (++T == GroupSize) {
692 T = 0;
693 }
694 continue;
695 }
696
697 assert(B < GroupSize && "Array overflow");
699
700
703 if (FirstNonDebugInstr != MBB->end() &&
705 SA->getFirstSplitPoint(Number)))
706 return false;
707
710 else
712
713
714 if (Intf.last() >= SA->getLastSplitPoint(Number))
716 else
718
719 if (++B == GroupSize) {
721 B = 0;
722 }
723 }
724
727 return true;
728}
729
730bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
731
732 BitVector Todo = SA->getThroughBlocks();
734 unsigned AddedTo = 0;
735#ifndef NDEBUG
736 unsigned Visited = 0;
737#endif
738
740 while (true) {
742
743 for (unsigned Bundle : NewBundles) {
744
746
747 if (Blocks.size() >= Budget)
748 return false;
749 Budget -= Blocks.size();
752 continue;
754
756#ifndef NDEBUG
757 ++Visited;
758#endif
759 }
760 }
761
762 if (ActiveBlocks.size() == AddedTo)
763 break;
764
765
766
767 auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo);
768 if (Cand.PhysReg) {
769 if (!addThroughConstraints(Cand.Intf, NewBlocks))
770 return false;
771 } else {
772
773
774
775
776
777 bool PrefSpill = true;
778 if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) {
779
780
781
782
784 if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] &&
785 all_of(NewBlocks.drop_front(), [&](unsigned Block) {
786 return L == Loops->getLoopFor(MF->getBlockNumbered(Block));
787 }))
788 PrefSpill = false;
789 }
790 if (PrefSpill)
791 SpillPlacer->addPrefSpill(NewBlocks, true);
792 }
793 AddedTo = ActiveBlocks.size();
794
795
797 }
799 return true;
800}
801
802
803
804
805
806
807
808
809bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
810
811 if (!SA->getNumThroughBlocks())
812 return false;
813
814
816
818
819
820
821 SpillPlacer->prepare(Cand.LiveBundles);
822
823
825 if (!addSplitConstraints(Cand.Intf, Cost)) {
827 return false;
828 }
829
830 if (!growRegion(Cand)) {
831 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
832 return false;
833 }
834
835 SpillPlacer->finish();
836
837 if (!Cand.LiveBundles.any()) {
839 return false;
840 }
841
843 for (int I : Cand.LiveBundles.set_bits())
845 dbgs() << ".\n";
846 });
847 return true;
848}
849
850
851
857
859
860
863 }
865}
866
867
868
869
870
871BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
874 const BitVector &LiveBundles = Cand.LiveBundles;
876 for (unsigned I = 0; I != UseBlocks.size(); ++I) {
879 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)];
880 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
881 unsigned Ins = 0;
882
883 Cand.Intf.moveToBlock(BC.Number);
884
889 while (Ins--)
891 }
892
893 for (unsigned Number : Cand.ActiveBlocks) {
894 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)];
895 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
896 if (!RegIn && !RegOut)
897 continue;
898 if (RegIn && RegOut) {
899
900 Cand.Intf.moveToBlock(Number);
901 if (Cand.Intf.hasInterference()) {
904 }
905 continue;
906 }
907
909 }
910 return GlobalCost;
911}
912
913
914
915
916
917
918
919
920
921
922
923
924
925void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
927
928
929 const unsigned NumGlobalIntvs = LREdit.size();
930 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
931 << " globals.\n");
932 assert(NumGlobalIntvs && "No global intervals configured");
933
934
935
936
939
940
944 unsigned IntvIn = 0, IntvOut = 0;
947 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
948 if (CandIn != NoCand) {
949 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
950 IntvIn = Cand.IntvIdx;
951 Cand.Intf.moveToBlock(Number);
952 IntfIn = Cand.Intf.first();
953 }
954 }
956 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
957 if (CandOut != NoCand) {
958 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
959 IntvOut = Cand.IntvIdx;
960 Cand.Intf.moveToBlock(Number);
961 IntfOut = Cand.Intf.last();
962 }
963 }
964
965
966 if (!IntvIn && !IntvOut) {
968 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
969 SE->splitSingleBlock(BI);
970 continue;
971 }
972
973 if (IntvIn && IntvOut)
974 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
975 else if (IntvIn)
976 SE->splitRegInBlock(BI, IntvIn, IntfIn);
977 else
978 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
979 }
980
981
982
983
984 BitVector Todo = SA->getThroughBlocks();
985 for (unsigned UsedCand : UsedCands) {
989 continue;
991
992 unsigned IntvIn = 0, IntvOut = 0;
994
995 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
996 if (CandIn != NoCand) {
997 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
998 IntvIn = Cand.IntvIdx;
999 Cand.Intf.moveToBlock(Number);
1000 IntfIn = Cand.Intf.first();
1001 }
1002
1003 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1004 if (CandOut != NoCand) {
1005 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1006 IntvOut = Cand.IntvIdx;
1007 Cand.Intf.moveToBlock(Number);
1008 IntfOut = Cand.Intf.last();
1009 }
1010 if (!IntvIn && !IntvOut)
1011 continue;
1012 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1013 }
1014 }
1015
1016 ++NumGlobalSplits;
1017
1019 SE->finish(&IntvMap);
1021
1022 unsigned OrigBlocks = SA->getNumLiveBlocks();
1023
1024
1025
1026
1027
1028
1029 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1031
1032
1033 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1034 continue;
1035
1036
1037
1038 if (IntvMap[I] == 0) {
1039 ExtraInfo->setStage(Reg, RS_Spill);
1040 continue;
1041 }
1042
1043
1044
1045 if (IntvMap[I] < NumGlobalIntvs) {
1046 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1047 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1048 << " blocks as original.\n");
1049
1050 ExtraInfo->setStage(Reg, RS_Split2);
1051 }
1052 continue;
1053 }
1054
1055
1056
1057 }
1058
1060 MF->verify(this, "After splitting live range around region", &errs());
1061}
1062
1068 unsigned NumCands = 0;
1071
1072
1073 bool HasCompact = calcCompactRegion(GlobalCand.front());
1074 if (HasCompact) {
1075
1076 NumCands = 1;
1078 } else {
1079
1080
1081 BestCost = SpillCost;
1082 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "
1084 }
1085
1086 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1087 NumCands, false );
1088
1089
1090 if (!HasCompact && BestCand == NoCand)
1092
1093 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1094}
1095
1096unsigned
1097RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg,
1100 unsigned &NumCands,
1101 unsigned &BestCand) {
1102
1103
1105 unsigned WorstCount = ~0u;
1106 unsigned Worst = 0;
1107 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1108 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1109 continue;
1110 unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1111 if (Count < WorstCount) {
1112 Worst = CandIndex;
1113 WorstCount = Count;
1114 }
1115 }
1116 --NumCands;
1117 GlobalCand[Worst] = GlobalCand[NumCands];
1118 if (BestCand == NumCands)
1119 BestCand = Worst;
1120 }
1121
1122 if (GlobalCand.size() <= NumCands)
1123 GlobalCand.resize(NumCands+1);
1124 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1125 Cand.reset(IntfCache, PhysReg);
1126
1127 SpillPlacer->prepare(Cand.LiveBundles);
1129 if (!addSplitConstraints(Cand.Intf, Cost)) {
1131 return BestCand;
1132 }
1135 if (Cost >= BestCost) {
1137 if (BestCand == NoCand)
1138 dbgs() << " worse than no bundles\n";
1139 else
1140 dbgs() << " worse than "
1141 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1142 });
1143 return BestCand;
1144 }
1145 if (!growRegion(Cand)) {
1146 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1147 return BestCand;
1148 }
1149
1150 SpillPlacer->finish();
1151
1152
1153 if (!Cand.LiveBundles.any()) {
1155 return BestCand;
1156 }
1157
1158 Cost += calcGlobalSplitCost(Cand, Order);
1161 for (int I : Cand.LiveBundles.set_bits())
1163 dbgs() << ".\n";
1164 });
1165 if (Cost < BestCost) {
1166 BestCand = NumCands;
1167 BestCost = Cost;
1168 }
1169 ++NumCands;
1170
1171 return BestCand;
1172}
1173
1174unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1177 unsigned &NumCands,
1178 bool IgnoreCSR) {
1179 unsigned BestCand = NoCand;
1180 for (MCPhysReg PhysReg : Order) {
1182 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1183 continue;
1184
1185 calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands,
1186 BestCand);
1187 }
1188
1189 return BestCand;
1190}
1191
1192unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1193 bool HasCompact,
1196
1199
1200
1202
1203
1204 if (BestCand != NoCand) {
1205 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1206 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1208 Cand.IntvIdx = SE->openIntv();
1210 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1211 (void)B;
1212 }
1213 }
1214
1215
1216 if (HasCompact) {
1217 GlobalSplitCandidate &Cand = GlobalCand.front();
1218 assert(!Cand.PhysReg && "Compact region has no physreg");
1219 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1221 Cand.IntvIdx = SE->openIntv();
1222 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1223 << " bundles, intv " << Cand.IntvIdx << ".\n");
1224 (void)B;
1225 }
1226 }
1227
1228 splitAroundRegion(LREdit, UsedCands);
1229 return 0;
1230}
1231
1232
1233
1234bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint,
1238
1239
1240
1242 return false;
1243
1244
1245 if (ExtraInfo->getStage(VirtReg) >= RS_Split2)
1246 return false;
1247
1250
1251
1252
1253
1256 continue;
1257 Register OtherReg = Instr.getOperand(1).getReg();
1258 if (OtherReg == Reg) {
1259 OtherReg = Instr.getOperand(0).getReg();
1260 if (OtherReg == Reg)
1261 continue;
1262
1264 continue;
1265 }
1268 if (OtherPhysReg == Hint)
1270 }
1271
1272
1274 Cost *= Threshold;
1276 return false;
1277
1278 unsigned NumCands = 0;
1279 unsigned BestCand = NoCand;
1280 SA->analyze(&VirtReg);
1281 calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand);
1282 if (BestCand == NoCand)
1283 return false;
1284
1285 doRegionSplit(VirtReg, BestCand, false, NewVRegs);
1286 return true;
1287}
1288
1289
1290
1291
1292
1293
1294
1295
1296unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1299 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1306 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1307 SE->splitSingleBlock(BI);
1308 }
1309
1310 if (LREdit.empty())
1311 return 0;
1312
1313
1315 SE->finish(&IntvMap);
1316
1317
1319
1320
1321
1322 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1324 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1325 ExtraInfo->setStage(LI, RS_Spill);
1326 }
1327
1329 MF->verify(this, "After splitting live range around basic blocks", &errs());
1330 return 0;
1331}
1332
1333
1334
1335
1336
1337
1338
1343 assert(SuperRC && "Invalid register class");
1344
1346 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1347 true);
1348 if (!ConstrainedRC)
1349 return 0;
1351}
1352
1360
1361 for (auto [MI, OpIdx] : Ops) {
1367 continue;
1369 }
1370
1372 if (MO.isDef()) {
1374 Mask |= ~SubRegMask;
1375 } else
1376 Mask |= SubRegMask;
1377 }
1378
1379 return Mask;
1380}
1381
1382
1383
1388
1389
1390
1391 auto DestSrc = TII->isCopyInstr(*MI);
1392 if (DestSrc && ->isBundled() &&
1393 DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg())
1394 return false;
1395
1396
1398
1401 if (S.liveAt(Use))
1402 LiveAtMask |= S.LaneMask;
1403 }
1404
1405
1406
1408}
1409
1410
1411
1412
1413
1414
1415
1416
1417unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1421
1422
1423 bool SplitSubClass = true;
1426 return 0;
1427 SplitSubClass = false;
1428 }
1429
1430
1431
1434
1436 if (Uses.size() <= 1)
1437 return 0;
1438
1440 << " individual instrs.\n");
1441
1444 unsigned SuperRCNumAllocatableRegs =
1446
1447
1448
1449
1453 (SplitSubClass &&
1454 SuperRCNumAllocatableRegs ==
1457
1458 (!SplitSubClass && VirtReg.hasSubRanges() &&
1461 continue;
1462 }
1463 }
1464 SE->openIntv();
1465 SlotIndex SegStart = SE->enterIntvBefore(Use);
1466 SlotIndex SegStop = SE->leaveIntvAfter(Use);
1467 SE->useIntv(SegStart, SegStop);
1468 }
1469
1470 if (LREdit.empty()) {
1472 return 0;
1473 }
1474
1476 SE->finish(&IntvMap);
1478
1479 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1480 return 0;
1481}
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492void RAGreedy::calcGapWeights(MCRegister PhysReg,
1494 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1497 const unsigned NumGaps = Uses.size()-1;
1498
1499
1504
1505 GapWeight.assign(NumGaps, 0.0f);
1506
1507
1511 continue;
1512
1513
1514
1515
1516
1517
1518
1519
1522 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1523
1524 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1525 if (++Gap == NumGaps)
1526 break;
1527 if (Gap == NumGaps)
1528 break;
1529
1530
1531 const float weight = IntI.value()->weight();
1532 for (; Gap != NumGaps; ++Gap) {
1533 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1534 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1535 break;
1536 }
1537 if (Gap == NumGaps)
1538 break;
1539 }
1540 }
1541
1542
1547
1548
1549 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1550 while (Uses[Gap+1].getBoundaryIndex() < I->start)
1551 if (++Gap == NumGaps)
1552 break;
1553 if (Gap == NumGaps)
1554 break;
1555
1556 for (; Gap != NumGaps; ++Gap) {
1558 if (Uses[Gap+1].getBaseIndex() >= I->end)
1559 break;
1560 }
1561 if (Gap == NumGaps)
1562 break;
1563 }
1564 }
1565}
1566
1567
1568
1569
1570unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1573
1574
1575 if (SA->getUseBlocks().size() != 1)
1576 return 0;
1577
1579
1580
1581
1582
1583
1584
1585
1586
1588 if (Uses.size() <= 2)
1589 return 0;
1590 const unsigned NumGaps = Uses.size()-1;
1591
1593 dbgs() << "tryLocalSplit: ";
1594 for (const auto &Use : Uses)
1596 dbgs() << '\n';
1597 });
1598
1599
1600
1603
1606
1607 unsigned RI =
1609 unsigned RE = RMS.size();
1610 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1611
1614 continue;
1615
1616
1618 break;
1621 RegMaskGaps.push_back(I);
1622
1623
1625 ++RI;
1626 }
1628 }
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1649
1650
1651 unsigned BestBefore = NumGaps;
1652 unsigned BestAfter = 0;
1653 float BestDiff = 0;
1654
1655 const float blockFreq =
1659
1660 for (MCPhysReg PhysReg : Order) {
1662
1663
1664 calcGapWeights(PhysReg, GapWeight);
1665
1666
1668 for (unsigned Gap : RegMaskGaps)
1670
1671
1672
1673
1674
1675 unsigned SplitBefore = 0, SplitAfter = 1;
1676
1677
1678
1679 float MaxGap = GapWeight[0];
1680
1681 while (true) {
1682
1683 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1684 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1685
1687 << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1688
1689
1690 if (!LiveBefore && !LiveAfter) {
1692 break;
1693 }
1694
1695 bool Shrink = true;
1696
1697
1698 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1699
1700
1701 bool Legal = !ProgressRequired || NewGaps < NumGaps;
1702
1704
1705
1706
1707
1708
1710 blockFreq * (NewGaps + 1),
1711 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1713 1);
1714
1715
1717 if (EstWeight * Hysteresis >= MaxGap) {
1718 Shrink = false;
1719 float Diff = EstWeight - MaxGap;
1720 if (Diff > BestDiff) {
1723 BestBefore = SplitBefore;
1724 BestAfter = SplitAfter;
1725 }
1726 }
1727 }
1728
1729
1730 if (Shrink) {
1731 if (++SplitBefore < SplitAfter) {
1733
1734 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1735 MaxGap = GapWeight[SplitBefore];
1736 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1737 MaxGap = std::max(MaxGap, GapWeight[I]);
1738 }
1739 continue;
1740 }
1741 MaxGap = 0;
1742 }
1743
1744
1745 if (SplitAfter >= NumGaps) {
1747 break;
1748 }
1749
1751 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1752 }
1753 }
1754
1755
1756 if (BestBefore == NumGaps)
1757 return 0;
1758
1759 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1760 << Uses[BestAfter] << ", " << BestDiff << ", "
1761 << (BestAfter - BestBefore + 1) << " instrs\n");
1762
1764 SE->reset(LREdit);
1765
1766 SE->openIntv();
1767 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1768 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1769 SE->useIntv(SegStart, SegStop);
1771 SE->finish(&IntvMap);
1773
1774
1775
1776 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1777 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1778 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1779 if (NewGaps >= NumGaps) {
1780 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1781 assert(!ProgressRequired && "Didn't make progress when it was required.");
1782 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1783 if (IntvMap[I] == 1) {
1786 }
1788 }
1789 ++NumLocalSplits;
1790
1791 return 0;
1792}
1793
1794
1795
1796
1797
1798
1799
1800
1804
1805 if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1806 return 0;
1807
1808
1812 SA->analyze(&VirtReg);
1813 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1814 if (PhysReg || !NewVRegs.empty())
1815 return PhysReg;
1816 return tryInstructionSplit(VirtReg, Order, NewVRegs);
1817 }
1818
1821
1822 SA->analyze(&VirtReg);
1823
1824
1825
1826
1827 if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1828 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1829 if (PhysReg || !NewVRegs.empty())
1830 return PhysReg;
1831 }
1832
1833
1834 return tryBlockSplit(VirtReg, Order, NewVRegs);
1835}
1836
1837
1838
1839
1840
1841
1844 if (MO.isTied())
1845 return true;
1846
1847 return false;
1848}
1849
1850
1851
1857 if (PhysReg == AssignedReg)
1858 return false;
1860}
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870bool RAGreedy::mayRecolorAllInterferences(
1872 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1874
1877
1878
1882 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1883 CutOffInfo |= CO_Interf;
1884 return false;
1885 }
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898 if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1903 FixedRegisters.count(Intf->reg())) {
1905 dbgs() << "Early abort: the interference is not recolorable.\n");
1906 return false;
1907 }
1908 RecoloringCandidates.insert(Intf);
1909 }
1910 }
1911 return true;
1912}
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1961 RecoloringStack &RecolorStack,
1962 unsigned Depth) {
1964 return ~0u;
1965
1966 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1967
1968 const ssize_t EntryStackSize = RecolorStack.size();
1969
1970
1972 "Last chance recoloring should really be last chance");
1973
1974
1975
1976
1978 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1979 CutOffInfo |= CO_Depth;
1980 return ~0u;
1981 }
1982
1983
1984 SmallLISet RecoloringCandidates;
1985
1986
1987
1989 FixedRegisters.insert(VirtReg.reg());
1991
1994 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1996 RecoloringCandidates.clear();
1997 CurrentNewVRegs.clear();
1998
1999
2003 dbgs() << "Some interferences are not with virtual registers.\n");
2004
2005 continue;
2006 }
2007
2008
2009
2010 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2011 FixedRegisters)) {
2012 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2013 continue;
2014 }
2015
2016
2017
2018
2019 PQueue RecoloringQueue;
2020 for (const LiveInterval *RC : RecoloringCandidates) {
2021 Register ItVirtReg = RC->reg();
2022 enqueue(RecoloringQueue, RC);
2024 "Interferences are supposed to be with allocated variables");
2025
2026
2027 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2028
2029
2031 }
2032
2033
2034
2035
2037
2038
2040
2041
2042
2043
2045 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2046 FixedRegisters, RecolorStack, Depth)) {
2047
2048 for (Register NewVReg : CurrentNewVRegs)
2050
2051
2054 return PhysReg;
2055 }
2056
2057
2058 LLVM_DEBUG(dbgs() << "tryRecoloringCandidates deleted a fixed register "
2059 << printReg(ThisVirtReg) << '\n');
2060 FixedRegisters.erase(ThisVirtReg);
2061 return 0;
2062 }
2063
2064 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2066
2067
2068 FixedRegisters = SaveFixedRegisters;
2070
2071
2072
2073
2074
2075 for (Register R : CurrentNewVRegs) {
2076 if (RecoloringCandidates.count(&LIS->getInterval(R)))
2077 continue;
2079 }
2080
2081
2082
2083
2084
2085
2086
2087 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2090 std::tie(LI, PhysReg) = RecolorStack[I];
2091
2094 }
2095
2096 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2099 std::tie(LI, PhysReg) = RecolorStack[I];
2102 }
2103
2104
2105 RecolorStack.resize(EntryStackSize);
2106 }
2107
2108
2109 return ~0u;
2110}
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2123 RecoloringStack &RecolorStack,
2124 unsigned Depth) {
2125 while (!RecoloringQueue.empty()) {
2127 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2128 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2129 RecolorStack, Depth + 1);
2130
2131
2132
2133
2134 if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2135 return false;
2136
2137 if (!PhysReg) {
2138 assert(LI->empty() && "Only empty live-range do not require a register");
2140 << " succeeded. Empty LI.\n");
2141 continue;
2142 }
2144 << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2145
2147 FixedRegisters.insert(LI->reg());
2148 }
2149 return true;
2150}
2151
2152
2153
2154
2155
2158 CutOffInfo = CO_None;
2163 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2164 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2165 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2166 if (CutOffEncountered == CO_Depth)
2167 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2168 "reached. Use -fexhaustive-register-search to skip "
2169 "cutoffs");
2170 else if (CutOffEncountered == CO_Interf)
2171 Ctx.emitError("register allocation failed: maximum interference for "
2172 "recoloring reached. Use -fexhaustive-register-search "
2173 "to skip cutoffs");
2174 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2175 Ctx.emitError("register allocation failed: maximum interference and "
2176 "depth for recoloring reached. Use "
2177 "-fexhaustive-register-search to skip cutoffs");
2178 }
2179 return Reg;
2180}
2181
2182
2183
2184
2185
2186
2187
2188MCRegister RAGreedy::tryAssignCSRFirstTime(
2191 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2192
2193
2194 SA->analyze(&VirtReg);
2195 if (calcSpillCost() >= CSRCost)
2196 return PhysReg;
2197
2198
2199
2200 CostPerUseLimit = 1;
2201 return 0;
2202 }
2203 if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2204
2205
2206 SA->analyze(&VirtReg);
2207 unsigned NumCands = 0;
2208 BlockFrequency BestCost = CSRCost;
2209 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2210 NumCands, true );
2211 if (BestCand == NoCand)
2212
2213 return PhysReg;
2214
2215
2216 doRegionSplit(VirtReg, BestCand, false, NewVRegs);
2217 return 0;
2218 }
2219 return PhysReg;
2220}
2221
2223
2224 SetOfBrokenHints.remove(&LI);
2225}
2226
2227void RAGreedy::initializeCSRCost() {
2228
2229
2233 return;
2234
2235
2237 if (!ActualEntry) {
2239 return;
2240 }
2241 uint64_t FixedEntry = 1 << 14;
2242 if (ActualEntry < FixedEntry)
2244 else if (ActualEntry <= UINT32_MAX)
2245
2247 else
2248
2249 CSRCost =
2251}
2252
2253
2254
2255
2256void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2259 continue;
2260
2261 Register OtherReg = Instr.getOperand(0).getReg();
2262 if (OtherReg == Reg) {
2263 OtherReg = Instr.getOperand(1).getReg();
2264 if (OtherReg == Reg)
2265 continue;
2266 }
2267
2270
2271 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2272 OtherPhysReg));
2273 }
2274}
2275
2276
2277
2278
2282 for (const HintInfo &Info : List) {
2283 if (Info.PhysReg != PhysReg)
2285 }
2286 return Cost;
2287}
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2298
2299
2300
2303 HintsInfo Info;
2306
2307
2308 Visited.insert(Reg);
2309 RecoloringCandidates.push_back(Reg);
2310
2312 << '(' << printReg(PhysReg, TRI) << ")\n");
2313
2314 do {
2316
2317
2318 if (Reg.isPhysical())
2319 continue;
2320
2321
2324 "We have an unallocated variable which should have been handled");
2325 continue;
2326 }
2327
2328
2329
2332
2333
2336 continue;
2337
2339 << ") is recolorable.\n");
2340
2341
2342 Info.clear();
2343 collectHintInfo(Reg, Info);
2344
2345
2346 if (CurrPhys != PhysReg) {
2348 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2349 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2351 << "\nNew Cost: "
2353 if (OldCopiesCost < NewCopiesCost) {
2355 continue;
2356 }
2357
2358
2359
2361
2364 }
2365
2366
2367 for (const HintInfo &HI : Info) {
2368 if (Visited.insert(HI.Reg).second)
2370 }
2371 } while (!RecoloringCandidates.empty());
2372}
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410void RAGreedy::tryHintsRecoloring() {
2411 for (const LiveInterval *LI : SetOfBrokenHints) {
2413 "Recoloring is possible only for virtual registers");
2414
2415
2417 continue;
2418 tryHintRecoloring(*LI);
2419 }
2420}
2421
2425 RecoloringStack &RecolorStack,
2426 unsigned Depth) {
2428
2429 auto Order =
2432 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2433
2434
2435
2437 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2438 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2439 CostPerUseLimit, NewVRegs);
2440 if (CSRReg || !NewVRegs.empty())
2441
2442
2443 return CSRReg;
2444 } else
2445 return PhysReg;
2446 }
2447
2448 if (!NewVRegs.empty())
2449 return 0;
2450
2451 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2452 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2453 << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2454
2455
2456
2457
2460 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2461 FixedRegisters)) {
2463
2464
2465
2466
2467
2468 if (Hint && Hint != PhysReg)
2469 SetOfBrokenHints.insert(&VirtReg);
2470 return PhysReg;
2471 }
2472
2473 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2474
2475
2476
2477
2479 ExtraInfo->setStage(VirtReg, RS_Split);
2482 return 0;
2483 }
2484
2486
2487 unsigned NewVRegSizeBefore = NewVRegs.size();
2488 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2489 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2490 return PhysReg;
2491 }
2492
2493
2494
2496 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2497 RecolorStack, Depth);
2498 }
2499
2500
2503 ExtraInfo->getStage(VirtReg) < RS_Memory) {
2504
2505
2506
2507
2508 ExtraInfo->setStage(VirtReg, RS_Memory);
2509 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2511 } else {
2516 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2517
2518
2519
2520
2525
2527 MF->verify(this, "After spilling", &errs());
2528 }
2529
2530
2531
2532 return 0;
2533}
2534
2536 using namespace ore;
2537 if (Spills) {
2538 R << NV("NumSpills", Spills) << " spills ";
2539 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2540 }
2541 if (FoldedSpills) {
2542 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2543 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2544 << " total folded spills cost ";
2545 }
2546 if (Reloads) {
2547 R << NV("NumReloads", Reloads) << " reloads ";
2548 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2549 }
2550 if (FoldedReloads) {
2551 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2552 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2553 << " total folded reloads cost ";
2554 }
2555 if (ZeroCostFoldedReloads)
2556 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2557 << " zero cost folded reloads ";
2559 R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2560 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2561 }
2562}
2563
2565 RAGreedyStats Stats;
2567 int FI;
2568
2571 A->getPseudoValue())->getFrameIndex());
2572 };
2573 auto isPatchpointInstr = [](const MachineInstr &MI) {
2574 return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2575 MI.getOpcode() == TargetOpcode::STACKMAP ||
2576 MI.getOpcode() == TargetOpcode::STATEPOINT;
2577 };
2580 if (DestSrc) {
2583 Register SrcReg = Src.getReg();
2585
2589 if (SrcReg && Src.getSubReg())
2590 SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg());
2591 }
2594 if (DestReg && Dest.getSubReg())
2596 }
2597 if (SrcReg != DestReg)
2599 }
2600 continue;
2601 }
2602
2605 ++Stats.Reloads;
2606 continue;
2607 }
2610 continue;
2611 }
2613 llvm::any_of(Accesses, isSpillSlotAccess)) {
2614 if (!isPatchpointInstr(MI)) {
2615 Stats.FoldedReloads += Accesses.size();
2616 continue;
2617 }
2618
2619 std::pair<unsigned, unsigned> NonZeroCostRange =
2623 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2626 continue;
2627 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2629 else
2631 }
2632
2633 for (unsigned Slot : FoldedReloads)
2634 ZeroCostFoldedReloads.erase(Slot);
2635 Stats.FoldedReloads += FoldedReloads.size();
2636 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2637 continue;
2638 }
2639 Accesses.clear();
2641 llvm::any_of(Accesses, isSpillSlotAccess)) {
2642 Stats.FoldedSpills += Accesses.size();
2643 }
2644 }
2645
2646
2648 Stats.ReloadsCost = RelFreq * Stats.Reloads;
2649 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2650 Stats.SpillsCost = RelFreq * Stats.Spills;
2651 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2652 Stats.CopiesCost = RelFreq * Stats.Copies;
2654}
2655
2656RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2657 RAGreedyStats Stats;
2658
2659
2661 Stats.add(reportStats(SubLoop));
2662
2664
2666 Stats.add(computeStats(*MBB));
2667
2668 if (.isEmpty()) {
2669 using namespace ore;
2670
2671 ORE->emit([&]() {
2673 L->getStartLoc(), L->getHeader());
2674 Stats.report(R);
2675 R << "generated in loop";
2676 return R;
2677 });
2678 }
2680}
2681
2682void RAGreedy::reportStats() {
2684 return;
2685 RAGreedyStats Stats;
2687 Stats.add(reportStats(L));
2688
2690 if (->getLoopFor(&MBB))
2691 Stats.add(computeStats(MBB));
2692 if (.isEmpty()) {
2693 using namespace ore;
2694
2695 ORE->emit([&]() {
2697 if (auto *SP = MF->getFunction().getSubprogram())
2698 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2700 &MF->front());
2701 Stats.report(R);
2702 R << "generated in function";
2703 return R;
2704 });
2705 }
2706}
2707
2708bool RAGreedy::hasVirtRegAlloc() {
2712 continue;
2714 if (!RC)
2715 continue;
2717 return true;
2718 }
2719
2720 return false;
2721}
2722
2724 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2725 << "********** Function: " << mf.getName() << '\n');
2726
2727 MF = &mf;
2728 TII = MF->getSubtarget().getInstrInfo();
2729
2731 MF->verify(this, "Before greedy register allocator", &errs());
2732
2734 getAnalysis().getLIS(),
2735 getAnalysis().getLRM());
2736
2737
2738
2739 if (!hasVirtRegAlloc())
2740 return false;
2741
2742 Indexes = &getAnalysis().getSI();
2743
2744
2746 MBFI = &getAnalysis().getMBFI();
2747 DomTree = &getAnalysis().getDomTree();
2748 ORE = &getAnalysis().getORE();
2749 Loops = &getAnalysis().getLI();
2750 Bundles = &getAnalysis().getEdgeBundles();
2751 SpillPlacer = &getAnalysis().getResult();
2752 DebugVars = &getAnalysis().getLDV();
2753 auto &LSS = getAnalysis().getLS();
2754
2755 initializeCSRCost();
2756
2758 RegClassPriorityTrumpsGlobalness =
2762
2766
2767 ExtraInfo.emplace();
2768 EvictAdvisor =
2769 getAnalysis().getAdvisor(*MF, *this);
2770 PriorityAdvisor =
2771 getAnalysis().getAdvisor(*MF, *this);
2772
2773 VRAI = std::make_unique(*MF, *LIS, *VRM, *Loops, *MBFI);
2774 SpillerInstance.reset(
2776
2777 VRAI->calculateSpillWeightsAndHints();
2778
2780
2782 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2783
2785 GlobalCand.resize(32);
2786 SetOfBrokenHints.clear();
2787
2789 tryHintsRecoloring();
2790
2792 MF->verify(this, "Before post optimization", &errs());
2794 reportStats();
2795
2797 return true;
2798}
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
DenseMap< Block *, BlockRelaxAux > Blocks
const HexagonInstrInfo * TII
This file implements an indexed map.
block placement Basic Block Placement Stats
#define INITIALIZE_PASS_DEPENDENCY(depName)
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
static cl::opt< bool > GreedyRegClassPriorityTrumpsGlobalness("greedy-regclass-priority-trumps-globalness", cl::desc("Change the greedy register allocator's live range priority " "calculation to make the AllocationPriority of the register class " "more important then whether the range is global"), cl::Hidden)
static cl::opt< bool > ExhaustiveSearch("exhaustive-register-search", cl::NotHidden, cl::desc("Exhaustive Search for registers bypassing the depth " "and interference cutoffs of last chance recoloring"), cl::Hidden)
static cl::opt< unsigned > LastChanceRecoloringMaxInterference("lcr-max-interf", cl::Hidden, cl::desc("Last chance recoloring maximum number of considered" " interference at a time"), cl::init(8))
static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg)
Return true if reg has any tied def operand.
static bool readsLaneSubset(const MachineRegisterInfo &MRI, const MachineInstr *MI, const LiveInterval &VirtReg, const TargetRegisterInfo *TRI, SlotIndex Use, const TargetInstrInfo *TII)
Return true if MI at \P Use reads a subset of the lanes live in VirtReg.
static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, const VirtRegMap &VRM, MCRegister PhysReg, const LiveInterval &Intf)
Return true if the existing assignment of Intf overlaps, but is not the same, as PhysReg.
static cl::opt< unsigned > CSRFirstTimeCost("regalloc-csr-first-time-cost", cl::desc("Cost for first time use of callee-saved register."), cl::init(0), cl::Hidden)
static cl::opt< unsigned > LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, cl::desc("Last chance recoloring max depth"), cl::init(5))
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", createGreedyRegisterAllocator)
static cl::opt< unsigned long > GrowRegionComplexityBudget("grow-region-complexity-budget", cl::desc("growRegion() does not scale with the number of BB edges, so " "limit its budget and bail out once we reach the limit."), cl::init(10000), cl::Hidden)
static cl::opt< unsigned > SplitThresholdForRegWithHint("split-threshold-for-reg-with-hint", cl::desc("The threshold for splitting a virtual register with a hint, in " "percentage"), cl::init(75), cl::Hidden)
Greedy Register Allocator
static cl::opt< SplitEditor::ComplementSpillMode > SplitSpillMode("split-spill-mode", cl::Hidden, cl::desc("Spill mode for splitting live ranges"), cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), cl::init(SplitEditor::SM_Speed))
static unsigned getNumAllocatableRegsForConstraints(const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, const RegisterClassInfo &RCI)
Get the number of allocatable registers that match the constraints of Reg on MI and that are also in ...
static cl::opt< bool > EnableDeferredSpilling("enable-deferred-spilling", cl::Hidden, cl::desc("Instead of spilling a variable right away, defer the actual " "code insertion to the end of the allocation. That way the " "allocator might still find a suitable coloring for this " "variable because of other evicted variables."), cl::init(false))
static cl::opt< bool > GreedyReverseLocalAssignment("greedy-reverse-local-assignment", cl::desc("Reverse allocation order of local live ranges, such that " "shorter local live ranges will tend to be allocated first"), cl::Hidden)
static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, const MachineInstr &FirstMI, Register Reg)
Remove Loads Into Fake Uses
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
SI optimize exec mask operations pre RA
This file defines the SmallSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
bool isHint(Register Reg) const
Return true if Reg is a preferred physical register.
ArrayRef< MCPhysReg > getOrder() const
Get the allocation order without reordered hints.
static AllocationOrder create(unsigned VirtReg, const VirtRegMap &VRM, const RegisterClassInfo &RegClassInfo, const LiveRegMatrix *Matrix)
Create a new AllocationOrder for VirtReg.
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
ArrayRef< T > slice(size_t N, size_t M) const
slice(n, m) - Chop off the first N elements of the array, and keep M elements in the array.
bool test(unsigned Idx) const
static BlockFrequency max()
Returns the maximum possible frequency, the saturation value.
uint64_t getFrequency() const
Returns the frequency as a fixpoint number scaled by the entry frequency.
ArrayRef< unsigned > getBlocks(unsigned Bundle) const
getBlocks - Return an array of blocks that are connected to Bundle.
unsigned getBundle(unsigned N, bool Out) const
getBundle - Return the ingoing (Out = false) or outgoing (Out = true) bundle number for basic block N
unsigned getNumBundles() const
getNumBundles - Return the total number of bundles in the CFG.
FunctionPass class - This class is used to implement most global optimizations.
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Cursor - The primary query interface for the block interference cache.
SlotIndex first()
first - Return the starting index of the first interfering range in the current block.
SlotIndex last()
last - Return the ending index of the last interfering range in the current block.
bool hasInterference()
hasInterference - Return true if the current block has any interference.
void moveToBlock(unsigned MBBNum)
moveTo - Move cursor to basic block MBBNum.
void init(MachineFunction *mf, LiveIntervalUnion *liuarray, SlotIndexes *indexes, LiveIntervals *lis, const TargetRegisterInfo *tri)
init - Prepare cache for a new function.
unsigned getMaxCursors() const
getMaxCursors - Return the maximum number of concurrent cursors that can be supported.
This is an important class for using LLVM in a threaded context.
void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
void splitRegister(Register OldReg, ArrayRef< Register > NewRegs, LiveIntervals &LIS)
splitRegister - Move any user variables in OldReg to the live ranges in NewRegs where they are live.
Query interferences between a single live virtual register and a live interval union.
const SmallVectorImpl< const LiveInterval * > & interferingVRegs(unsigned MaxInterferingRegs=std::numeric_limits< unsigned >::max())
SegmentIter find(SlotIndex x)
LiveSegments::iterator SegmentIter
A live range for subregisters.
LiveInterval - This class represents the liveness of a register, or stack slot.
bool isSpillable() const
isSpillable - Can this interval be spilled?
bool hasSubRanges() const
Returns true if subregister liveness information is available.
unsigned getSize() const
getSize - Returns the sum of sizes of all the LiveRange's.
iterator_range< subrange_iterator > subranges()
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction associated with the given index.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const
Returns the base index of the given instruction.
LiveRange & getRegUnit(unsigned Unit)
Return the live range for register unit Unit.
ArrayRef< SlotIndex > getRegMaskSlotsInBlock(unsigned MBBNum) const
Returns a sorted array of slot indices of all instructions with register mask operands in the basic b...
LiveInterval & getInterval(Register Reg)
MachineBasicBlock * intervalIsInOneMBB(const LiveInterval &LI) const
If LI is confined to a single basic block, return a pointer to that block.
Register get(unsigned idx) const
ArrayRef< Register > regs() const
This class represents the liveness of a register, stack slot, etc.
bool liveAt(SlotIndex index) const
SlotIndex beginIndex() const
beginIndex - Return the lowest numbered slot covered.
SlotIndex endIndex() const
endNumber - return the maximum point of the range of the whole, exclusive.
iterator find(SlotIndex Pos)
find - Return an iterator pointing to the first segment that ends after Pos, or end().
bool checkRegMaskInterference(const LiveInterval &VirtReg, MCRegister PhysReg=MCRegister::NoRegister)
Check for regmask interference only.
void unassign(const LiveInterval &VirtReg)
Unassign VirtReg from its PhysReg.
bool isPhysRegUsed(MCRegister PhysReg) const
Returns true if the given PhysReg has any live intervals assigned.
LiveIntervalUnion::Query & query(const LiveRange &LR, MCRegUnit RegUnit)
Query a line of the assigned virtual register matrix directly.
@ IK_VirtReg
Virtual register interference.
void assign(const LiveInterval &VirtReg, MCRegister PhysReg)
Assign VirtReg to PhysReg.
InterferenceKind checkInterference(const LiveInterval &VirtReg, MCRegister PhysReg)
Check for interference before assigning VirtReg to PhysReg.
LiveIntervalUnion * getLiveUnions()
Directly access the live interval unions per regunit.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
iterator_range< MCRegUnitIterator > regunits(MCRegister Reg) const
Returns an iterator range over all regunits for Reg.
Wrapper class representing physical registers. Should be passed by value.
constexpr bool isValid() const
static constexpr unsigned NoRegister
constexpr unsigned id() const
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
iterator getFirstNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the first non-debug instruction in the basic block, or end().
BlockFrequency getBlockFreq(const MachineBasicBlock *MBB) const
getblockFreq - Return block frequency.
double getBlockFreqRelativeToEntryBlock(const MachineBasicBlock *MBB) const
Compute the frequency of the block, relative to the entry block.
BlockFrequency getEntryFreq() const
Divide a block's BlockFrequency::getFrequency() value by this value to obtain the entry block - relat...
Analysis pass which computes a MachineDominatorTree.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool isSpillSlotObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a spill slot.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineBasicBlock * getBlockNumbered(unsigned N) const
getBlockNumbered - MachineBasicBlocks are automatically numbered when they are inserted into the mach...
bool verify(Pass *p=nullptr, const char *Banner=nullptr, raw_ostream *OS=nullptr, bool AbortOnError=true) const
Run the current MachineFunction through the machine code verifier, useful for debugger use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
bool isImplicitDef() const
A description of a memory reference used in the backend.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register getSimpleHint(Register VReg) const
getSimpleHint - same as getRegAllocationHint except it will only return a target independent hint.
const TargetRegisterClass * getRegClass(Register Reg) const
Return the register class of the specified virtual register.
bool reg_nodbg_empty(Register RegNo) const
reg_nodbg_empty - Return true if the only instructions using or defining Reg are Debug instructions.
iterator_range< def_iterator > def_operands(Register Reg) const
LaneBitmask getMaxLaneMaskForVReg(Register Reg) const
Returns a mask covering all bits that can appear in lane masks of subregisters of the virtual registe...
unsigned getNumVirtRegs() const
getNumVirtRegs - Return the number of virtual registers created.
iterator_range< reg_instr_nodbg_iterator > reg_nodbg_instructions(Register Reg) const
Spiller & spiller() override
void releaseMemory() override
releaseMemory() - This member can be implemented by a pass if it wants to be able to release its memo...
MCRegister selectOrSplit(const LiveInterval &, SmallVectorImpl< Register > &) override
bool runOnMachineFunction(MachineFunction &mf) override
Perform register allocation.
const LiveInterval * dequeue() override
dequeue - Return the next unassigned register, or NULL.
RAGreedy(const RegAllocFilterFunc F=nullptr)
void enqueueImpl(const LiveInterval *LI) override
enqueue - Add VirtReg to the priority queue of unassigned registers.
void getAnalysisUsage(AnalysisUsage &AU) const override
RAGreedy analysis usage.
void aboutToRemoveInterval(const LiveInterval &) override
Method called when the allocator is about to remove a LiveInterval.
RegAllocBase provides the register allocation driver and interface that can be extended to add intere...
void enqueue(const LiveInterval *LI)
enqueue - Add VirtReg to the priority queue of unassigned registers.
void init(VirtRegMap &vrm, LiveIntervals &lis, LiveRegMatrix &mat)
SmallPtrSet< MachineInstr *, 32 > DeadRemats
Inst which is a def of an original reg and whose defs are already all dead after remat is saved in De...
const TargetRegisterInfo * TRI
static const char TimerGroupName[]
static const char TimerGroupDescription[]
virtual void postOptimization()
RegisterClassInfo RegClassInfo
MachineRegisterInfo * MRI
bool shouldAllocateRegister(Register Reg)
Get whether a given register should be allocated.
static bool VerifyEnabled
VerifyEnabled - True when -verify-regalloc is given.
ImmutableAnalysis abstraction for fetching the Eviction Advisor.
std::optional< unsigned > getOrderLimit(const LiveInterval &VirtReg, const AllocationOrder &Order, unsigned CostPerUseLimit) const
bool isUnusedCalleeSavedReg(MCRegister PhysReg) const
Returns true if the given PhysReg is a callee saved register and has not been used for allocation yet...
bool canReassign(const LiveInterval &VirtReg, MCRegister FromReg) const
bool canAllocatePhysReg(unsigned CostPerUseLimit, MCRegister PhysReg) const
unsigned getLastCostChange(const TargetRegisterClass *RC) const
Get the position of the last cost change in getOrder(RC).
bool isProperSubClass(const TargetRegisterClass *RC) const
isProperSubClass - Returns true if RC has a legal super-class with more allocatable registers.
unsigned getNumAllocatableRegs(const TargetRegisterClass *RC) const
getNumAllocatableRegs - Returns the number of actually allocatable registers in RC in the current fun...
uint8_t getMinCost(const TargetRegisterClass *RC) const
Get the minimum register cost in RC's allocation order.
MCRegister getLastCalleeSavedAlias(MCRegister PhysReg) const
getLastCalleeSavedAlias - Returns the last callee saved register that overlaps PhysReg,...
Wrapper class representing virtual and physical registers.
static Register index2VirtReg(unsigned Index)
Convert a 0-based index to a virtual register number.
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
unsigned virtRegIndex() const
Convert a virtual register number to a 0-based index.
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
SlotIndex - An opaque wrapper around machine indexes.
static bool isSameInstr(SlotIndex A, SlotIndex B)
isSameInstr - Return true if A and B refer to the same instruction.
static bool isEarlierInstr(SlotIndex A, SlotIndex B)
isEarlierInstr - Return true if A refers to an instruction earlier than B.
bool isValid() const
Returns true if this is a valid index.
SlotIndex getBoundaryIndex() const
Returns the boundary index for associated with this index.
SlotIndex getBaseIndex() const
Returns the base index for associated with this index.
@ InstrDist
The default distance between instructions as returned by distance().
int getApproxInstrDistance(SlotIndex other) const
Return the scaled distance from this index to the given one, where all slots on the same instruction ...
SlotIndex getRegSlot(bool EC=false) const
Returns the register use/def slot in the current instruction for a normal or early-clobber def.
SlotIndex getLastIndex()
Returns the base index of the last slot in this analysis.
SlotIndex getMBBStartIdx(unsigned Num) const
Returns the first index in the given basic block number.
void packIndexes()
Renumber all indexes using the default instruction distance.
SlotIndex getZeroIndex()
Returns the zero index for this analysis.
MachineInstr * getInstructionFromIndex(SlotIndex index) const
Returns the instruction for the given index, or null if the given index has no instruction associated...
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
size_type count(const T &V) const
count - Return 1 if the element is in the set, 0 otherwise.
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void assign(size_type NumElts, ValueParamT Elt)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
void addConstraints(ArrayRef< BlockConstraint > LiveBlocks)
addConstraints - Add constraints and biases.
bool finish()
finish - Compute the optimal spill code placement given the constraints.
void addPrefSpill(ArrayRef< unsigned > Blocks, bool Strong)
addPrefSpill - Add PrefSpill constraints to all blocks listed.
void prepare(BitVector &RegBundles)
prepare - Reset state and prepare for a new spill placement computation.
bool scanActiveBundles()
scanActiveBundles - Perform an initial scan of all bundles activated by addConstraints and addLinks,...
void addLinks(ArrayRef< unsigned > Links)
addLinks - Add transparent blocks with the given numbers.
void iterate()
iterate - Update the network iteratively until convergence, or new bundles are found.
@ MustSpill
A register is impossible, variable must be spilled.
@ DontCare
Block doesn't care / variable not live.
@ PrefReg
Block entry/exit prefers a register.
@ PrefSpill
Block entry/exit prefers a stack slot.
ArrayRef< unsigned > getRecentPositive()
getRecentPositive - Return an array of bundles that became positive during the previous call to scanA...
BlockFrequency getBlockFrequency(unsigned Number) const
getBlockFrequency - Return the estimated block execution frequency per function invocation.
virtual void spill(LiveRangeEdit &LRE)=0
spill - Spill the LRE.getParent() live interval.
SplitAnalysis - Analyze a LiveInterval, looking for live range splitting opportunities.
SplitEditor - Edit machine code and LiveIntervals for live range splitting.
@ SM_Partition
SM_Partition(Default) - Try to create the complement interval so it doesn't overlap any other interva...
@ SM_Speed
SM_Speed - Overlap intervals to minimize the expected execution frequency of the inserted copies.
@ SM_Size
SM_Size - Overlap intervals to minimize the number of inserted COPY instructions.
TargetInstrInfo - Interface to description of machine instruction set.
virtual std::pair< unsigned, unsigned > getPatchpointUnfoldableRange(const MachineInstr &MI) const
For a patchpoint, stackmap, or statepoint intrinsic, return the range of operands which can't be fold...
bool isFullCopyInstr(const MachineInstr &MI) const
virtual bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a store to a stack slot, return true along with the FrameInd...
virtual Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct load from a stack slot, return the virtual or physic...
virtual Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
std::optional< DestSourcePair > isCopyInstr(const MachineInstr &MI) const
If the specific machine instruction is a instruction that moves/copies value from one register to ano...
virtual bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a load from a stack slot, return true along with the FrameIn...
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
const bool GlobalPriority
const uint8_t AllocationPriority
Classes with a higher priority value are assigned first by register allocators using a greedy heurist...
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual bool shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF, const LiveInterval &VirtReg) const
Deferred spilling delays the spill insertion of a virtual register after every other allocation.
virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF, const LiveInterval &VirtReg) const
Region split has a high compile time cost especially for large live range.
virtual bool shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF, const LiveInterval &VirtReg) const
Last chance recoloring has a high compile time cost especially for targets with a lot of registers.
virtual unsigned getCSRFirstUseCost() const
Allow the target to override the cost of using a callee-saved register for the first time.
LaneBitmask getCoveringLanes() const
The lane masks returned by getSubRegIndexLaneMask() above can only be used to determine if sub-regist...
ArrayRef< uint8_t > getRegisterCosts(const MachineFunction &MF) const
Get a list of cost values for all registers that correspond to the index returned by RegisterCostTabl...
virtual bool reverseLocalAssignment() const
Allow the target to reverse allocation order of local live ranges.
LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const
Return a bitmask representing the parts of a register that are covered by SubIdx.
virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass *RC, const MachineFunction &) const
Returns the largest super class of RC that is legal to use in the current sub-target and has the same...
MCRegister getSubReg(MCRegister Reg, unsigned Idx) const
Returns the physical register number of sub-register "Index" for physical register RegNo.
bool regsOverlap(Register RegA, Register RegB) const
Returns true if the two registers are equal or alias each other.
const char * getRegClassName(const TargetRegisterClass *Class) const
Returns the name of the register class.
virtual bool regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const
When prioritizing live ranges in register allocation, if this hook returns true then the AllocationPr...
A Use represents the edge between a Value definition and its users.
bool hasKnownPreference(Register VirtReg) const
returns true if VirtReg has a known preferred register.
MCRegister getPhys(Register virtReg) const
returns the physical register mapped to the specified virtual register
bool hasPhys(Register virtReg) const
returns true if the specified virtual register is mapped to a physical register
int getNumOccurrences() const
Reg
All possible values of the reg field in the ModR/M byte.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
This is an optimization pass for GlobalISel generic memory operations.
std::function< bool(const TargetRegisterInfo &TRI, const MachineRegisterInfo &MRI, const Register Reg)> RegAllocFilterFunc
Filter function for register classes during regalloc.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
FunctionPass * createGreedyRegisterAllocator()
Greedy register allocation pass - This pass implements a global register allocator for optimized buil...
bool TimePassesIsEnabled
If the user specifies the -time-passes argument on an LLVM tool command line then the value of this b...
char & RAGreedyID
Greedy register allocator.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
auto reverse(ContainerTy &&C)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
@ RS_Split2
Attempt more aggressive live range splitting that is guaranteed to make progress.
@ RS_Spill
Live range will be spilled. No more splitting will be attempted.
@ RS_Split
Attempt live range splitting if assignment is impossible.
@ RS_New
Newly created live range that has never been queued.
@ RS_Done
There is nothing more we can do to this live range.
@ RS_Assign
Only attempt assignment and eviction. Then requeue as RS_Split.
@ RS_Memory
Live range is in memory.
Spiller * createInlineSpiller(const Spiller::RequiredAnalyses &Analyses, MachineFunction &MF, VirtRegMap &VRM, VirtRegAuxInfo &VRAI)
Create and return a spiller that will insert spill code directly instead of deferring though VirtRegM...
VirtRegInfo AnalyzeVirtRegInBundle(MachineInstr &MI, Register Reg, SmallVectorImpl< std::pair< MachineInstr *, unsigned > > *Ops=nullptr)
AnalyzeVirtRegInBundle - Analyze how the current instruction or bundle uses a virtual register.
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
const float huge_valf
Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Printable printBlockFreq(const BlockFrequencyInfo &BFI, BlockFrequency Freq)
Print the block frequency Freq relative to the current functions entry frequency.
static float normalizeSpillWeight(float UseDefFreq, unsigned Size, unsigned NumInstr)
Normalize the spill weight of a live interval.
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
uint64_t maxUIntN(uint64_t N)
Gets the maximum value for a N-bit unsigned integer.
constexpr bool any() const
This class is basically a combination of TimeRegion and Timer.
BlockConstraint - Entry and exit constraints for a basic block.
BorderConstraint Exit
Constraint on block exit.
bool ChangesValue
True when this block changes the value of the live range.
BorderConstraint Entry
Constraint on block entry.
unsigned Number
Basic block number (from MBB::getNumber()).
Additional information about basic blocks where the current variable is live.
SlotIndex FirstDef
First non-phi valno->def, or SlotIndex().
bool LiveOut
Current reg is live out.
bool LiveIn
Current reg is live in.
SlotIndex LastInstr
Last instr accessing current reg.
SlotIndex FirstInstr
First instr accessing current reg.