pandas.arrays.IntegerArray — pandas 2.3.3 documentation (original) (raw)
class pandas.arrays.IntegerArray(values, mask, copy=False)[source]#
Array of integer (optional missing) values.
Uses pandas.NA as the missing value.
Warning
IntegerArray is currently experimental, and its API or internal implementation may change without warning.
We represent an IntegerArray with 2 numpy arrays:
- data: contains a numpy integer array of the appropriate dtype
- mask: a boolean array holding a mask on the data, True is missing
To construct an IntegerArray from generic array-like input, usepandas.array() with one of the integer dtypes (see examples).
See Nullable integer data type for more.
Parameters:
valuesnumpy.ndarray
A 1-d integer-dtype array.
masknumpy.ndarray
A 1-d boolean-dtype array indicating missing values.
copybool, default False
Whether to copy the values and mask.
Attributes
Methods
Returns:
IntegerArray
Examples
Create an IntegerArray with pandas.array().
int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype()) int_array [1, , 3] Length: 3, dtype: Int32
String aliases for the dtypes are also available. They are capitalized.
pd.array([1, None, 3], dtype='Int32') [1, , 3] Length: 3, dtype: Int32
pd.array([1, None, 3], dtype='UInt16') [1, , 3] Length: 3, dtype: UInt16