Nullable integer data type — pandas 2.2.3 documentation (original) (raw)
Note
IntegerArray is currently experimental. Its API or implementation may change without warning. Uses pandas.NA as the missing value.
In Working with missing data, we saw that pandas primarily uses NaN
to represent missing data. Because NaN
is a float, this forces an array of integers with any missing values to become floating point. In some cases, this may not matter much. But if your integer column is, say, an identifier, casting to float can be problematic. Some integers cannot even be represented as floating point numbers.
Construction#
pandas can represent integer data with possibly missing values usingarrays.IntegerArray. This is an extension typeimplemented within pandas.
In [1]: arr = pd.array([1, 2, None], dtype=pd.Int64Dtype())
In [2]: arr Out[2]: [1, 2, ] Length: 3, dtype: Int64
Or the string alias "Int64"
(note the capital "I"
) to differentiate from NumPy’s 'int64'
dtype:
In [3]: pd.array([1, 2, np.nan], dtype="Int64") Out[3]: [1, 2, ] Length: 3, dtype: Int64
All NA-like values are replaced with pandas.NA.
In [4]: pd.array([1, 2, np.nan, None, pd.NA], dtype="Int64") Out[4]: [1, 2, , , ] Length: 5, dtype: Int64
This array can be stored in a DataFrame or Series like any NumPy array.
In [5]: pd.Series(arr) Out[5]: 0 1 1 2 2 dtype: Int64
You can also pass the list-like object to the Series constructor with the dtype.
Warning
Currently pandas.array() and pandas.Series() use different rules for dtype inference. pandas.array() will infer a nullable-integer dtype
In [6]: pd.array([1, None]) Out[6]: [1, ] Length: 2, dtype: Int64
In [7]: pd.array([1, 2]) Out[7]: [1, 2] Length: 2, dtype: Int64
For backwards-compatibility, Series infers these as either integer or float dtype.
In [8]: pd.Series([1, None]) Out[8]: 0 1.0 1 NaN dtype: float64
In [9]: pd.Series([1, 2]) Out[9]: 0 1 1 2 dtype: int64
We recommend explicitly providing the dtype to avoid confusion.
In [10]: pd.array([1, None], dtype="Int64") Out[10]: [1, ] Length: 2, dtype: Int64
In [11]: pd.Series([1, None], dtype="Int64") Out[11]: 0 1 1 dtype: Int64
In the future, we may provide an option for Series to infer a nullable-integer dtype.
Operations#
Operations involving an integer array will behave similar to NumPy arrays. Missing values will be propagated, and the data will be coerced to another dtype if needed.
In [12]: s = pd.Series([1, 2, None], dtype="Int64")
arithmetic
In [13]: s + 1 Out[13]: 0 2 1 3 2 dtype: Int64
comparison
In [14]: s == 1 Out[14]: 0 True 1 False 2 dtype: boolean
slicing operation
In [15]: s.iloc[1:3] Out[15]: 1 2 2 dtype: Int64
operate with other dtypes
In [16]: s + s.iloc[1:3].astype("Int8") Out[16]: 0 1 4 2 dtype: Int64
coerce when needed
In [17]: s + 0.01 Out[17]: 0 1.01 1 2.01 2 dtype: Float64
These dtypes can operate as part of a DataFrame
.
In [18]: df = pd.DataFrame({"A": s, "B": [1, 1, 3], "C": list("aab")})
In [19]: df Out[19]: A B C 0 1 1 a 1 2 1 a 2 3 b
In [20]: df.dtypes Out[20]: A Int64 B int64 C object dtype: object
These dtypes can be merged, reshaped & casted.
In [21]: pd.concat([df[["A"]], df[["B", "C"]]], axis=1).dtypes Out[21]: A Int64 B int64 C object dtype: object
In [22]: df["A"].astype(float) Out[22]: 0 1.0 1 2.0 2 NaN Name: A, dtype: float64
Reduction and groupby operations such as sum() work as well.
In [23]: df.sum(numeric_only=True) Out[23]: A 3 B 5 dtype: Int64
In [24]: df.sum() Out[24]: A 3 B 5 C aab dtype: object
In [25]: df.groupby("B").A.sum() Out[25]: B 1 3 3 0 Name: A, dtype: Int64
Scalar NA Value#
arrays.IntegerArray uses pandas.NA as its scalar missing value. Slicing a single element that’s missing will returnpandas.NA
In [26]: a = pd.array([1, None], dtype="Int64")
In [27]: a[1] Out[27]: