pandas.DataFrame.dropna — pandas 2.2.3 documentation (original) (raw)
DataFrame.dropna(*, axis=0, how=<no_default>, thresh=<no_default>, subset=None, inplace=False, ignore_index=False)[source]#
Remove missing values.
See the User Guide for more on which values are considered missing, and how to work with missing data.
Parameters:
axis{0 or ‘index’, 1 or ‘columns’}, default 0
Determine if rows or columns which contain missing values are removed.
- 0, or ‘index’ : Drop rows which contain missing values.
- 1, or ‘columns’ : Drop columns which contain missing value.
Only a single axis is allowed.
how{‘any’, ‘all’}, default ‘any’
Determine if row or column is removed from DataFrame, when we have at least one NA or all NA.
- ‘any’ : If any NA values are present, drop that row or column.
- ‘all’ : If all values are NA, drop that row or column.
threshint, optional
Require that many non-NA values. Cannot be combined with how.
subsetcolumn label or sequence of labels, optional
Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include.
inplacebool, default False
Whether to modify the DataFrame rather than creating a new one.
ignore_indexbool, default False
If True
, the resulting axis will be labeled 0, 1, …, n - 1.
Added in version 2.0.0.
Returns:
DataFrame or None
DataFrame with NA entries dropped from it or None if inplace=True
.
Examples
df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Drop the rows where at least one element is missing.
df.dropna() name toy born 1 Batman Batmobile 1940-04-25
Drop the columns where at least one element is missing.
df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman
Drop the rows where all elements are missing.
df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Keep only the rows with at least 2 non-NA values.
df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT
Define in which columns to look for missing values.
df.dropna(subset=['name', 'toy']) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT